TNO Bericht (TNO = Niederländische Organisation für angewandte naturwissenschaftliche Forschung) TNO-MER - R 96/059

TNO Umwelt, Energie und Prozessinnovation

Massebilanzen und Emissionen von Kremationsprozessen in den Niederlanden

- Smit-Report -

Autor: Ing. E.R. Smit

Laan van Westernenk 501 Postbus 342 7300 AH Apeldoorn Telefon 055 - 549 34 93 Fax 055 - 541 98 37

Alle Rechte vorbehalten: Vervielfältigungen, Druck, Fotokopie, Mikroform oder jedwede andere Art der Verbreitung nicht ohne vorherige Zustimmung der TNO.

Im Falle einer Auftragsarbeit gelten die in den 'Allgemeinen Bedingungen für Forschungsaufträge an TNO' hinterlegten Rechte und Pflichten oder individuelle Bestimmungen zwischen den Vertragsparteien. Die Weitergabe des TNO-Berichtes zur Einsicht an direkt Betroffene ist gestattet. (c) TNO

Das Qualitätssystem der TNO Umwelt, Energie und Prozessinnovation entspricht der Norm ISO 9001. Die TNO Umwelt, Energie und Prozessinnovation ist ein national und international anerkanntes Forschungsinstitut auf dem Gebiet nachhaltiger Entwicklung und umweltorientierter Prozessinnovation und arbeitet im Auftrag von Regierungsstellen sowie gewerblicher Wirtschaft. Datum: Februar 1996

Projektnummer: 25990/26335

Schlagwörter:

- Krematorium
- Massenbilanz
- Emission
- Zusammensetzung
- Schwermetalle
- Quecksilber
- Aufgestellt für:

Ministerium für Wohnungswesen, Raumordnung und Umweltfragen, Generaldirektion Umweltschutz Direktion Luft und Energie, Abteilung für Gewerbe z.Hd. Ing. H.W. Holtring Postfach 30945 2500 GX 's-Gravenhage

Übersetzung: Linnea Kop Anmerkungen: Grün und kursiv

Übersetzung ins Deutsche im Auftrag des Verbandes für Gedenkkultur e.V. (VfG), Unna/Berlin www.gedenkkultur.de

Niederländische Organisation für angewandte naturwissenschaftliche Forschung. Für Aufträge an die TNO gelten die beim Landgericht und der Industrie- und Handelskammer zu 's-Gravenhage niedergelegten Allgemeinen Geschäftsbedingungen.

Zusammenfassung

Die vorliegende Studie über die Luft- und Bodenbelastung von Kremationsprozessen wurde von der Abteilung Verbrennung und Konversion der TNO-MEP (*TNO Umwelt, Energie und Prozessinnovation*) im Auftrag des Direktoriums für Luft und Energie des Ministeriums für VROM (*Wohnungswesen, Raumordnung und Umweltfragen, Generaldirektion Umweltschutz*) durchgeführt. Das Ziel dieser Studie war, Einblicke in die Verbreitung von umweltschädlichen Komponenten und ihrer Herkunft zu erhalten. Das Untersuchungslayout wurde in Absprache mit dem Sachverständigenausschuss erstellt.

Die Studie wurde in zwei Krematorien mit verschiedenen Prozessabläufen durchgeführt, je eines im Kaltstart- und eines im Warmstartbetrieb. Beide Prozesse unterscheiden sich im Wesentlichen durch die Lufttemperatur im Ofen beim Einfahren des Sarges sowie durch die Dauer der Prozesse.

Sowohl beim Warmstart- als auch beim Kaltstartbetrieb wurden bei drei Einäscherungen Messungen und Probenentnahmen stofflicher Austräge (Rostasche, Flugasche und Rauchgase) durchgeführt und deren Zusammensetzung bestimmt. Die Zusammenstellung der stofflichen Einträge (Sarg, Körper, Erdgas, Verbrennungsluft) wurde an Hand von Literaturangaben ermittelt. Anschließend wurde mit den hier erworbenen Resultaten für alle untersuchten Bestandteile eine Massenbilanz für den Kremationsprozess erstellt.

An Hand der Analysen von Rostasche, Flugasche und Rauchgase wurde die Verteilung aller Bestandteile in den drei genannten stofflichen Austrägen bestimmt.

Aufgrund ihrer umweltbelastenden Eigenschaften wurde den Emissionen von Schwermetallen, Phosphorverbindungen, Stickstoff, Schwefel, Chlor und Fluor besondere Aufmerksamkeit geschenkt. Ebenfalls wurde bestimmt, welchen Einfluss das dem Kremationsvorgang folgende Mahlen der Rostasche auf den Schwermetallgehalt der Asche hat.

Im Rahmen der Studie wurde außerdem bestimmt, welchen Einfluss Amalgam-Füllungen auf die Quecksilberemissionen hat. Hierzu wurde vor jedem Prozess eine exakt bestimmte Menge an Amalgam mit bekanntem Quecksilbergehalt in den Ofen gegeben. Die hinzugefügte Menge an Amalgam entsprach der Menge von fünf Zahnfüllungen.

Beim Kaltstartbetrieb wird ein Großteil (>90%) der Schwermetalle in der Rostasche wiedergefunden. Beim Warmstartbetrieb befinden sich 35% bis 65% der Schwermetalle in der Rostasche. Der Anteil der Schwermetalle im Rauchgas ist bei beiden Ofentypen niedriger als 1,5%. Die restliche Menge der Schwermetalle ist in der Flugasche gebunden. Zwischen den verschiedenen Schwermetallen kann sich der Prozentsatz der Verteilung der verschiedenen stofflichen Austräge stark unterscheiden, unter anderem als Folge der unterschiedlichen Flüchtigkeiten.

Der Unterschied in der Schwermetallverteilung in den stofflichen Austrägen zwischen den beiden Ofentypen wird durch die unterschiedlichen Ofentemperaturen verursacht. Es wurde festgestellt, dass Schwermetalle sich beim Warmstartbetrieb schneller aus der Rostasche verflüchtigen, um anschließend auf den Flugascheteilchen zu kondensieren.

Aus der Studie geht hervor, dass mehr als 99,8% des Quecksilbers im Rauchgasstrom ausgetragen wird. Das ausgetragene Quecksilber war bei allen untersuchten Kremationsprozessen nahezu ebenso groß wie die als Quecksilber-Amalgam hinzugefügt Menge. Daraus lässt sich schließen, dass Quecksilber-Amalgam die wichtigste Quelle für Quecksilberemissionen bei Kremationsprozessen ist.

Stickstoff, Schwefel, Chlor und lösliche Fluoride werden insbesondere mit den Rauchgasen ausgestoßen. Phosphor ist größtenteils in der Rostasche gebunden.

Die CO-, C_xH_Y- und NO_x-Konzentrationen in den Rauchgasen sind bezogen auf einen O₂-Gehalt von 11% in den Rauchgasen bei Warmstartkremationen allgemein höher als bei Kaltstartkremationen. Die höhere CO- und C_xH_Y-Konzentration im Warmstartbetrieb wird vermutlich dadurch verursacht, dass die Brenner im warmen Ofen lange Zeit ausgeschaltet sind, wodurch - in Kombination mit einer niedrigeren Nachbrenntemperatur - eine weniger gute Durchmischung der Verbrennungsgase stattfindet.

Der Unterschied von NO_x-Rauchgaskonzentrationen zwischen beiden Betriebsvarianten kann mit den Daten, die in dieser Studie erhoben wurden, nicht erklärt werden. Weitere Studien hierzu wären wünschenswert.

Das Zerkleinern in der Knochenmühle führt zu einem Anstieg des Schwermetallgehaltes in der Rostasche. Diese beträgt, abhängig vom angewandten Zerkleinerungsprozess, zwischen 200% bis 365% bei Aluminium, Mangan, Zinn und Nickel. Beim Kaltstartprozess wurde außerdem eine Zunahme des Chrom- und Vanadiumgehalts in der Rostasche festgestellt.

Die Differenzen zwischen Ein- und Austrägen einzelner Komponenten variieren jedoch abhängig von den untersuchten Komponenten zwischen einem und mehreren tausenden Prozent, was sich nicht aufklären ließ. Vermutet werden ungenaue Literaturangaben über Inhalte von Särgen und Körpern, vor allem bei Spurenelementen.¹

¹ <u>Hinweis:</u> Zwischenzeitlich sind als weitere Ursachen für hohe Schwermetallbelastungen der Aschen Erosion der Chrom-Nickel-Stähle sowie ggf. Abplatzungen der Schamottsteine identifiziert worden. Vgl.: Fachzeitschrift "Friedhofskultur", 03/16 u. 06/16 sowie Downloads zum Seminar der Deutschen Bundesstiftung Umwelt (DBU) "Totenasche, eine Gefahr für Grundwasser und Böden?" Osnabrück, veröffentlicht im Januar 2016 unter <u>https://www.dbu.de/media/130116122640hsli.pdf</u>

Vortrag Dr. Horn, dort s.u.: <u>S. 22</u> Verhältnis Schwermetallbelastungen zu Grenzwerten des Bodenschutzes sowie

https://www.dbu.de/media/130116122819hsli.pdf, Vortrag Dr. Schetter

Weiterhin gelten Lederbekleidung/Schuhe, Duftstoffe/Geruchsmaskierer und andere Sargbeigaben als mögliche Schwermetallemittenten.

Inhalt

 2. Prozessbeschreibung
 3. Durchführung der Untersuchung
 3.1 Allgemein 3.1.1 Stoffliche Einträge 3.1.2 Stoffliche Austräge 3.2 Untersuchungslayout zum Kaltstartbetrieb 3.3 Untersuchungslayout zum Warmstartbetrieb 4. Ergebnisse 4.1 Allgemein 4.2 Zusammenstellung der stofflichen Einträge 4.3 Ergebnisse zum Kaltstartbetrieb 4.3.1 Stoffliche Einträge 4.3.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche
 3.1.1 Stoffliche Einträge 3.2 Untersuchungslayout zum Kaltstartbetrieb 3.3 Untersuchungslayout zum Warmstartbetrieb 4. Ergebnisse 4.1 Allgemein 4.2 Zusammenstellung der stofflichen Einträge 4.3 Ergebnisse zum Kaltstartbetrieb 4.3.1 Stoffliche Einträge 4.3.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.1 Stoffliche Einträge 4.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche
 3.1.2 Stoffliche Austräge 3.2 Untersuchungslayout zum Kaltstartbetrieb 3.3 Untersuchungslayout zum Warmstartbetrieb 4. Ergebnisse 4.1 Allgemein 4.2 Zusammenstellung der stofflichen Einträge 4.3 Ergebnisse zum Kaltstartbetrieb 4.3.1 Stoffliche Einträge 4.3.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massenbilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche
 3.2 Untersuchungslayout zum Kaltstartbetrieb 3.3 Untersuchungslayout zum Warmstartbetrieb 4. Ergebnisse
 3.3 Untersuchungslayout zum Warmstartbetrieb 4. Ergebnisse
 4. Ergebnisse
 4.1 Allgemein 4.2 Zusammenstellung der stofflichen Einträge 4.3 Ergebnisse zum Kaltstartbetrieb 4.3.1 Stoffliche Einträge 4.3.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche
 4.2 Zusammenstellung der stofflichen Einträge 4.3 Ergebnisse zum Kaltstartbetrieb 4.3.1 Stoffliche Einträge 4.3.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.3 Ergebnisse zum Kaltstartbetrieb 4.3.1 Stoffliche Einträge 4.3.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.3.1 Stoffliche Einträge 4.3.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.3.2 Stoffliche Austräge 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.3.3 Massenbilanzen 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.4 Ergebnisse zum Warmstartbetrieb 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.4.1 Stoffliche Einträge 4.4.2 Stoffliche Austräge 4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.4.2 Stoffliche Austräge 4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.4.3 Massebilanzen 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung
 4.5 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche 5. Auswertung 5. 1 Dressesführung
5. Auswertung
5.1 Prozesstuniung
5.2 Schwermetalle
5.3 Quecksilber
5.4 Phosphor
5.5 Stickstoff
5.6 Schwefel
5.7 Chlor
5.8 Lösliches Fluor
5.9 Rauchgasemissionen
5.10 Vergleich mit anderen Studien
6. Fazit44
7. Literatur44
8. Verantwortliche Institutionen und Verfasser4
Anhang44
A Messergebnisse der stofflichen Austräge
B Schematische Darstellung eines Kremationsofens
C Ergebnisse der Messungen im Kalt- und Warmstartbetrieb
D Verwendete Mess- und Stichprobenverfahren
E Qualitätssicherung
F Mitgliederliste des Sachverständigenausschusses für Krematorien

Nomenklatur: Ind. = im normalen Zustand, trocken (273K, 1013 hPa), h = Stunden, m³= Kubikmeter

1. Einleitung

Im Auftrag der Direktion für Luft und Energie des Ministeriums für VROM (*Wohnungswesen, Raumordnung und Umweltfragen, Generaldirektion Umweltschutz*) wurde von der Abteilung Verbrennung und Konversion von der TNO-MEP eine Studie über die Emissionen von Kremationsprozessen in Boden und Luft durchgeführt. Das Ziel dieser Studie war, Einblicke in die Verbreitung von umweltschädlichen Komponenten über Rauchgase und die Rostasche in die Umwelt und über ihre Herkunft zu erhalten.

Die Studie wurde vor dem Hintergrund vorausgehender TNO-Studien zu Krematorien durch das Ministerium für VROM initiiert. Aus diesen Studien ging hervor, dass vor allem die Quecksilberemissionen in die Atmosphäre als Folge von Zahnfüllungen nicht immer mit den Mengen an Quecksilber im menschlichen Körper übereinstimmen. Zudem wurde die Frage gestellt, in welchem Maße und durch welche Ströme andere umweltschädliche Komponenten bei Kremationen emittiert werden.

Um belastbare Erkenntnisse zur Umweltbelastung von Einäscherungen zu gewinnen, wurde in Absprache mit dem Sachverständigenausschuss zunächst ein Untersuchungslayout erstellt. Dieses beinhaltete sowohl stoffliche Eingangs- Ausgangsbilanzen einer Kremation als auch Erkenntnisse zur Beschaffenheit der Rostasche und der Rauchgase. Hierzu wurden bei zwei verschiedenen Kremationen Messungen und Probenentnahmen durchgeführt.

Der Sachverständigenausschuss setzte sich aus folgenden Institutionen zusammen (die Mitgliederliste findet sich im Anhang F):

- Direktion für Luft und Energie, Abteilung für Gewerbe des Ministeriums für VROM;
- Hauptinspektion für Umwelthygiene des Ministeriums für VROM;
- Infomil-NeR;
- Regionale Inspektion für Umwelthygiene Noord-Brabant;
- Vereniging Nederlandse Gemeenten (Niederländischer Kommunalverband);
- Gemeinde De Bilt;
- Platform Uitvaartwezen (Plattform Bestattungswesen).

Die Studie wurde ermöglicht durch die Mitarbeit von:

- All Europe BV;
- TABO-INEX BV;
- Platform Uitvaartwezen (Plattform Bestattungswesen);
- DELA uitvaartcentrum Eindhoven (DELA Bestattungszentrum Eindhoven);
- Krematorium 'Den en Rust' in Bilthoven;
- Krematorium in Heeze;
- DELA uitvaartverzorging BV (Bestattungsbetreuung).

Die Ergebnisse der vorliegenden Studie sollen bei der Einführung einer Sonderregelung für Krematorien in der NER (*Niederländische Emissionsrichtlinie Luft*) verwendet werden. Bisher sind die Genehmigungsbehörden und Gemeinden frei in der Festlegung von Emissionsgrenzwerten bei Kremationsprozessen. Die einzuführende NER-Richtlinie soll Genehmigungsbehörden und Krematorien mehr Beurteilungssicherheit verschaffen.

Die Studie wurde in zwei Krematorien durchgeführt, die als repräsentativ für die Niederländische Kremationstechnik gelten. Die Auswahl der Krematorien wurde von der TNO in Absprache mit dem Sachverständigenausschuss und unter Mitarbeit der Arbeitsgruppe Bestattungswesen, DEA, TABO-INEX und All-Europe durchgeführt. Die Wahl fiel hierbei auf das Krematorium 'Den en Rust' in Bilthoven und das Krematorium 'Heeze' in Heeze. In Bilthoven werden Einzeleinäscherungen im Kaltstartbetrieb vorgenommen, während in Heeze ein Warmstartbetrieb erfolgt. Im Kapitel Prozess-beschreibung werden diese verschiedenen Verfahren näher beschrieben. Die ausgewählten Öfen sind repräsentativ für die Landessituation, sie werden von 90% der Niederländischen Krematorien verwendet und sind auf dem neuesten Stand der Technik.

Die Durchführung der Studie wird in diesem Bericht in Kapitel 3 beschrieben. Kapitel 4 gibt eine Übersicht über die Studienergebnisse bei den zwei untersuchten Betriebstypen. Die Ergebnisse werden in Kapitel 5 näher bewertet. In Kapitel 6 wird ein Fazit zur der durchgeführten Studie gezogen.

2. Prozessbeschreibung

Kaltstartbetrieb

Im Krematorium Den en Rust in Bilthoven stehen zwei Öfen, die für den Kaltstartbetrieb verwendet und jeweils mit einer eigenen Regelung und Rauchgasabfuhr betrieben werden. Die Kremationsöfen wurden durch die Firma All Europe BV geliefert. Sie bestehen aus einem Ofenraum und einem Nachbrennraum, die jeweils mit einem gasbetriebenen Brenner ausgestattet sind.

Vor der ersten Kremation des Tages wird der Nachbrenner gestartet. Wenn die Temperatur des Nachbrennraumes 450°C erreicht, wird der Sarg mit den körperlichen Überresten in den Ofenraum eingeführt und der Hauptbrenner gestartet. Der Nachbrenner steigert die Temperatur modulierend bis 850°C. Der Hauptbrenner beginnt herunterzuregeln, wenn die Ofentemperatur 600°C beträgt und wird ausgeschaltet, sobald die Ofentemperatur 950°C erreicht.

Die Menge der Sekundärluft wird an Hand einer Sauerstoffmessung im Nachverbrennungsraum reguliert.

Der Kremationsprozess dauert, abhängig vom eingeführten Gewicht und der Zusammenstellung, 1,75 bis 2,5 Stunden. Nach Ende des Prozesses wird der Hauptbrenner ausgeschaltet und der Ofen geräumt. Die Aschereste werden in einem Aschekasten aufgefangen und kühlen darin auf Umgebungstemperatur ab. Der nächste Kremationsprozess wird gestartet, wenn der Ofenraum auf 300°C abgekühlt ist. In Anhang B3 ist eine schematische Zeichnung des Kremationsofens zu finden.

Mit Hilfe eines Magnetabscheiders wird das Eisen aus den nach der Kremation übriggebliebenen Ascheresten entfernt. Der Aschekasten mit der metallfreien Asche wird in eine Hammermühle verfüllt, wo die Asche zerkleinert wird.

Die Rauchgase, die während der Kremation entstehen, werden anschließend direkt aus dem Nachbrennraum ungekühlt durch einen 6,90 m hohen isolierten Schornstein in die Luft abgeführt.

Warmstartbetrieb

Im Krematorium in Heeze stehen drei Kremationsöfen, die für den Warmstartbetrieb vorgesehen sind. Der Ofen, an dem die Studie durchgeführt wurde, besitzt eine automatische Heizregelung und ein von den anderen Öfen getrenntes Rauchgasabführsystem. Die Öfen in diesem Krematorium wurden von TABO-INEX BV geliefert.

Der Kremationsofen besteht aus einem Ofenraum und einem Nachbrennraum, jeweils ausgestattet mit einem mit Erdgas betriebenen Brenner. Der auf 700°C vorgewärmte Ofen wird durch den Nachbrenner auf 850°C geheizt. Wenn die gewünschten Temperaturen erreicht sind, wird der Nachbrenner ausgeschaltet und der Sarg eingeführt. Durch die Strahlungshitze der Ofenwände entflammt den Sarg spontan. Der Kremationsprozess wird durch einen Heizautomaten geregelt, der während des Prozesses ein Programm mit mehreren Schritten ausführt. Dieses Programm ist in Anhang B zu finden. Die Ofentemperatur wird während dieses Prozesses auf einige festgelegte Werte geregelt, die zwischen 700°C und 950°C variieren. Am Ende des Prozesses, wenn der Verbrennungsprozess zäher wird, wird durch den Brenner die Temperatur von 700°C bis 850°C gehalten. (Siehe Anhang B.2.)

Die Menge an Verbrennungsluft wird durch einen Sauerstoffmesser im Nachbrennraum geregelt. Die Menge der Verbrennungsluft wird so reguliert, dass der Sauerstoffgehalt hinter dem Nachbrenner zwischen 8 und 10 Vol. % liegt.

Die benötigte Zugluft im Schornstein wird durch einen Luftinjektor im Schornsteinkanal erzeugt. Dieser Injektor sorgt ebenfalls für eine Kühlung der Rauchgase auf ca. 300°C, wonach diese direkt über den Schornstein in die Luft abgeführt werden. In Anhang B.1 ist eine schematische Zeichnung des Kremationsofens zu finden.

Am Ende eines Kremationsprozesses, der ca. 1 - 1,5 Stunden dauert, wird der Ofen geräumt und die Rostasche in einem Aschekasten gesammelt. Solange der Ofenraum noch eine Temperatur von 700°C hat, kann der nächste Kremationsprozess danach sofort beginnen. Die Rostasche lässt man anschließend abkühlen. Daraufhin werden mit Hilfe eines Magnetabscheiders Metalle entfernt. Der Aschekasten mit der metallfreien Asche wird anschließend in eine Knochenmühle gegeben, wo sie zerkleinert wird. Der Zerkleinerungsprozess dauert ca. 20 Minuten.

3. Durchführung der Untersuchung

3.1 Allgemein

In Absprache mit dem Sachverständigenausschuss wurde ein Untersuchungslayout entwickelt, um Kenntnisse über Emissionen fester und gasförmiger Stoffe in die Umwelt, sowie die Herkunft dieser Komponenten zu gewinnen. Hierzu wurden durch Messungen, Analysen und Probenentnahmen die stofflichen Einträge und Austräge eines Kremationsprozesses im Hinblick auf ihre Zusammensetzung bestimmt. Mit diesen Ergebnissen wurde eine Massenbilanz des Kremationsprozesses aufgestellt. Beim Erstellen der Massenbilanz wurden folgende stoffliche Einträge und Austräge unterschieden:

7

Stoffliche Einträge:

- Körper
- Sarg
- Erdgas
- Verbrennungsluft

Stoffliche Austräge:

- Rauchgas
- Flugasche
- Rostasche

Bei der Charakterisierung der stofflichen Ein- und Austräge wurde besonders auf die Bestimmung von umweltbelastenden Stoffen wie Quecksilber, Schwermetalle sowie bodenverändernden Stoffe wie Phosphor- und Stickstoffverbindungen geachtet.

Über Quecksilber ist bekannt, dass es im menschlichen Körper vor allem in der Form von Amalgam-Zahnfüllungen vorkommt. Die durchschnittliche Menge beträgt ca. 5 Gramm Amalgam pro Person, was ca. 2,5 Gramm Quecksilber entspricht. Um eine zuverlässige Massenbilanz für Quecksilber zu erstellen, war es notwendig, dass der zu kremierende Körper keine Amalgam-Zahnfüllungen enthielt. Zu dem zu untersuchenden Prozess wurde vor der Kremation eine exakt bekannte Menge an Quecksilber hinzugefügt, die fünf Amalgamfüllungen entspricht (= 5 g).

Schwermetalle kommen häufig im menschlichen Körper, der Kleidung (Farbstoffe, Flammschutzmittel) und dem Sargmaterial vor. Mittels Literaturangaben [1] wurde eine Schätzung der Schwermetallkonzentration durchgeführt.

Um diese Schätzung so genau wie möglich zu machen, war es notwendig, dass der zu kremierende Körper keine Knochenprothesen, Herzschrittmacher oder Schmuck und Uhren enthielt. Durch die aktive Mitarbeit der beteiligten Bestattungsunternehmer konnte die TNO kontrollieren, ob diese Bedingungen erfüllt wurden.

Phosphate entstehen in Folge der Verbrennung von Phosphor, das im menschlichen Körper zu finden ist. Ein Körper mit einem Gewicht von 70 kg enthält nach Literaturangaben [1] 700 g Phosphor. Phosphoremissionen haben einen säuernden Einfluss auf Luft und Boden.

Die Studie wurde an zwei Orten ausgeführt:

- Krematorium Den en Rust in Bilthoven (Kaltstartbetrieb)
- Krematorium Heeze in Heeze (Warmstartbetrieb)

3.1.1 Stoffliche Einträge

An Hand von Literaturangaben wurde die Zusammenstellung der stofflichen Einträge geschätzt. Ebenfalls wurde festgestellt, wie groß der betreffende stoffliche Eintrag war (Masse bzw. Ertrag).

Körper

Für die Charakterisierung des Körpers war die Mitarbeit der beteiligten Mitarbeiter der Bestattungsunternehmen notwendig. Durch einen Fragebogen, der durch die Bestattungsunternehmer ausgefüllt wurde, wurde festgestellt, ob der Körper die gestellten Bedingungen erfüllte. Diese Bedingungen waren:

- Abwesenheit von Knochenprothesen. Dies konnte anhand von Narben festgestellt werden, die in Folge von Implantationen entstanden waren.
- Abwesenheit von Herzschrittmachern. In weitaus den meisten Fällen werden diese vor der Kremation entfernt. Sollte dies dennoch nicht passiert sein, konnte das durch den Bestattungsunternehmer auf einfache Weise festgestellt werden.
- Abwesenheit von Schmuck und Uhren.
- Abwesenheit von Quecksilber-Amalgam Füllungen.

An Hand von Literaturangaben wurde die Zusammenstellung des menschlichen Körpers geschätzt, inklusive der Schwermetalle.

Um den Effekt von Quecksilber-Amalgam Füllungen auf die Emissionen festzustellen, wurde durch einen Bestattungsunternehmer in Anwesenheit eines TNO Mitarbeiters eine exakt bekannte Menge Quecksilber-Amalgam mit einer bekannten Menge Quecksilber zum Köper hinzugefügt.

Sarg

Im Allgemeinen besteht ein Einäscherungssarg in den Niederlanden aus lackierter Spanplatte, innen mit Kunststoffsatinverkleidung, einem Bodenbelag aus Papier und einem Bett aus Holzspänen versehen. An Hand von Angaben des Bestattungsunternehmers bezüglich des Sargtypus, der benutzt wurde, konnte mit Hilfe der TNO zugänglichen Literaturangaben eine Schätzung der Zusammensetzung des Sargs erfolgen.

Erdgas

Die Zusammensetzung des Erdgases wurde an Hand von allgemeinen Daten der Gasunie NV [3] bestimmt.

Verbrennungsluft

Die Zusammenstellung der Luft ist exakt bekannt. Die relative Feuchtigkeit der Verbrennungsluft wurde durch stichprobenartige Messungen während der untersuchten Kremationsprozesse festgestellt.

3.1.2. Stoffliche Austräge

Die Menge und die Zusammensetzung der stofflichen Austräge wurden durch Messungen während des Kremationsvorgangs, integrierte Probenentnahmen und chemische Analysen bestimmt. In Tabelle 3.1 sind die stofflichen Austräge aufgeführt, deren Bestandteile bestimmt wurden.

Smit	-Ror	ort
SIIIII	-net	JUIL

Bestandteil	Rostasche	Flugasche	Rauchgas
Aluminium (Al)	Х	Х	Х
Arsen (As)	Х	Х	Х
Gold (Au)	Х	Х	Х
Barium (Ba)	Х	Х	Х
Kadmium (Cd)	Х	Х	Х
Kobalt (Co)	Х	Х	Х
Chrom (Cr)	Х	Х	Х
Kupfer (Cu)	Х	Х	Х
Quecksilber (Hg)	Х	Х	Х
Mangan (Mn)	Х	Х	Х
Molybdän (Mb)	Х	Х	Х
Nickel (Ni)	Х	Х	Х
Blei (Pb)	Х	Х	Х
Antimon (Sb)	Х	Х	Х
Selen (Sb)	Х	Х	Х
Zinn (Sn)	Х	Х	Х
Tellur (Te)	Х	Х	Х
Vanadium (V)	Х	Х	Х
Zink (Zn)	Х	Х	Х
Chlor (Cl)	Х	Х	
Schwefel (S)	Х	Х	
Phosphor (P)	Х	Х	
Lösliche Phosphorsäure (als P ₂ O ₅)	Х	Х	
Lösliches Chlor (Cl ⁻)	Х	Х	Х
Lösliches Fluor (F ⁻)	Х	Х	Х
Kjedahl Stickstoff (N)	Х	Х	
Stickstoffoxide (NO _x)			Х
Schwefeloxide (SO ₂)			Х
Kohlenwasserstoffe (C _x H _y)			Х
Kohlenmonoxid (CO)			Х
Kohlendioxid (CO ₂)			Х
Sauerstoff (O ₂)			Х

Tabelle 3.1: Charakterisierung der stofflichen Austräge

Die Konzentration der Bestandteile SO₂, NO_x, C_xH_y, CO, CO₂ und O₂ in den Rauchgasen wurden kontinuierlich online gemessen. Die Konzentration der übrigen in Tabelle 3.1 genannten Bestandteile in den drei stofflichen Austrägen wurde integral während eines Kremationsprozesses bestimmt. Neben den in Tabelle 3.1 genannten Komponenten wurde außerdem bestimmt:

- Menge der Rostasche;
- Menge der Flugasche;
- Temperatur der Rauchgase;
- Feuchtigkeitsgehalt der Rauchgase.

Der durchschnittliche Rauchgasertrag wurde an Hand des Erdgasverbrauches, dem durchschnittlichen Sauerstoffgehalt der Rauchgase während der Kremation, dem Gewicht des Sargs und des Körpers und der durchschnittlichen Zusammenstellung des Sargs und des Körpers bestimmt. Die durchschnittliche Konzentration der Bestandteile während des Kremationsprozesses wurde durch kontinuierlich registrierte Messungen oder durch Probenentnahmen während des gesamten Kremationsprozesses ermittelt. Durch die Multiplikation der durchschnittlichen Konzentration mit dem durchschnittlichen Rauchgasertrag wurde die absolute Menge der Bestandteile in den Rauchgasen berechnet.

So wie in Kapitel 2 beschrieben, wird nach dem Beenden des Kremationsprozesses die Rostasche mit einer Knochenmühle zerkleinert. Die Teile dieser Mühle, die mit der Rostasche in Berührung kommen, sind aus Metalllegierungen konstruiert, in denen Schwermetalle verarbeitet sind. Beim Zerkleinerungsprozess können Schwermetalle der Knochenmühle in die Rostasche geraten. Um diese Menge festzustellen, wurde sowohl gemahlene aus auch ungemahlene Rostasche aus jeweils demselben Kremationsprozess im Hinblick auf die freigesetzten Schwermetalle analysiert.

Während des Kremationsprozesses wurden einige Prozessdaten durch Instrumente des Krematoriums registriert und gespeichert. Diese sogenannten Betriebsdaten, welche bei den untersuchten Prozessen bei beiden Ofentypen registriert wurden, sind in Anhang C zu finden.

3.2 Untersuchungslayout zum Kaltstartbetrieb

Die Untersuchungen des Kaltstartbetriebes wurden im Krematorium Den en Rust in Bilthoven am 17. und 18. Mai 1995 durchgeführt. Beim Krematorium Den en Rust stehen zwei identische Kremationsöfen, jeweils versehen mit eigener Steuerung und Rauchgasableitung. Untersucht wurde am rechten Ofen (von der Einfuhrseite des Ofens aus gesehen). Die Messungen der Rauchgase wurden im Schornsteinkanal dieses Ofens durchgeführt. Hierfür wurde ein eigens konstruierter, nicht isolierter Schornsteinaufsatz verwendet, der mit den notwendigen Messöffnungen versehen oben auf dem bestehenden Schornsteinkanal befestigt wurde.

Da das Krematorium Den en Rust Körper von verschiedenen Bestattungsunternehmen angeliefert bekommt, fand die Inaugenscheinnahme der Körper und der Särge vor Ort statt. Unmittelbar vor der Kremierung wurde vorher abgewogenes Quecksilber-Amalgam in Höhe des Kopfes abgelegt.

Aufgrund der Tatsache, dass mehrere Bestattungsunternehmen das Krematorium Den en Rust beliefern, war es nicht möglich, das Gewicht des Sarges und des Körpers separat festzustellen. Sarg und Körper wurden daher zusammen gewogen und aus der Kenntnis bezüglich des Sarggewichts (siehe Kap. 3.3) das Gewicht des Körpers ermittelt.

Die Studie wurde bei drei Kremationsprozessen durchgeführt. Dabei wurde als Beginn der Messungen der Moment des Sargeinfahrens in den Ofen festgelegt. Als Endpunkt der Messungen wurde der Moment bestimmt, bei dem das Steuerungssystem des Ofens das Abkühlungsprogramm startete. Der Erdgasverbrauch wurde mit Hilfe eines Gasverbrauchsmessers gemessen, der im Krematorium installiert war. Während der Messungen war der andere Ofen nicht in Gebrauch.

In Anhang D sind die angewandten Mess- und Probeentnahmetechniken detailliert beschrieben. Eine Probe der Rostasche wurde direkt nach dem Mahlvorgang der Knochenmühle entnommen.

3.3. Untersuchungslayout zum Warmstartbetrieb

Die Untersuchungen zum Warmstartbetrieb wurden im Krematorium Heeze am 11. und 12. Juli 1995 durchgeführt. In diesem Krematorium gibt es drei Öfen, wovon zwei über ein älteres Steuerungs-

Smit-Report

system verfügen. Der Ofen woran die Studie ausgeführt wurde, wird durch eine moderne Heizregulierung gesteuert. Die Rauchgase dieses Ofens werden durch einen separaten Rauchgaskanal ausgestoßen. Auf die Ausstromöffnung dieses Kanals wurde ebenfalls ein für diesen Zweck konstruierter, nicht isolierter Aufsatz gesetzt, der mit den benötigten Messöffnungen ausgestattet war.

Etwa fünf Tage vor den Messungen wurde im Bestattungszentrum Eindhoven eine Inaugenscheinnahme der Körper durchgeführt, die zur Kremierung vorgesehen waren. Diese Inspektion konnte schon im Bestattungsinstitut ausgeführt werden, da der Großteil der für Heeze zu kremierenden Körper aus diesem Institut stammen.

Im Institut wurde eine vorher abgewogene Menge von ca. 5 g Quecksilber-Amalgam dem Sarg auf der Höhe des Kopfes beigefügt. Ferner wurde kontrolliert, ob der Körper die gestellten Bedingungen, wie in Kap. 3.1.1 aufgeführt, erfüllt. Im Institut wurde zudem vorher der leere Sarg, kurz bevor der Körper dort hineingelegt wurde, gewogen. Am Tag der Kremation wurde durch Wiegen das Gewicht von Sarg und Körper zusammen festgestellt.

Das in Heeze ermittelte durchschnittliche Gewicht des leeren Sargs wurde als Parameter bei der Studie in Bilthoven benutzt.

Die Studie wurde bei drei Kremationsprozessen durchgeführt. Für jeden Prozess wurde hier ebenfalls als Startpunkt der Messungen der Moment Sargeinfahrens in den Ofen festgelegt. Als Endpunkt der Messungen wurde der Moment bestimmt, in dem das Regulierungssystem des Ofens das Abkühlungsprogramm startete. Der Erdgasverbrauch wurde mit Hilfe eines im Krematorium installierten Gasverbrauchsmessers gemessen. Zur Zeit der Messungen waren die anderen Öfen nicht in Gebrauch.

In Anhang D sind die angewandten Mess- und Probeentnahmetechniken im Detail beschrieben.

Eine Probe der Rostasche wurde direkt nach dem Mahlvorgang der Knochenmühle genommen.

4. Ergebnisse

4.1 Allgemein

Im Rahmen dieser Studie war es notwendig, an Hand von Literaturangaben eine Reihe von Schätzungen bezüglich der stofflichen Einträge (Erdgas, Sarg, Körper) durchzuführen. Vor allen in den Mikrokomponenten ist die Schätzung sehr ungenau. Diese Konzentrationen können sich pro Körper und Sarg unterscheiden. Die angegebenen Mengen dieser Komponenten im Sargmaterial und im Körper geben mehr eine Größenordnung an, als dass sie die wirklichen Konzentrationen wiederspiegeln. Die Mengen an Kohlenstoff, Stickstoff, Phosphor und Schwefel hingegen variieren viel weniger, ihnen wird daher ein größeres Maß an Verlässlichkeit zugeschrieben. Die Ungenauigkeit hierin wird auf ca. 10% des angegebenen Wertes geschätzt.

Da vor der Kremation eine bekannte Menge an Quecksilber dem Prozess hinzugefügt wurde, war die Menge des Quecksilbers in den stofflichen Einträgen bekannt.

Die stofflichen Austräge wurden durch Probenentnahmen und Analysen präzise ermittelt.

In den folgenden Kapiteln sind die jeweiligen Massenströme im Einzelnen dargestellt. Anschließend wird an Hand dieser Zusammensetzungen eine Massenbilanz für die untersuchten Komponenten aufgestellt. In Anhang A werden die Messdaten detailliert aufgeführt.

4.2 Zusammenstellung der stofflichen Einträge

Beim Kremationsprozess sind folgende stoffliche Einträge zu unterscheiden:

- Körper;
- Sarg;
- Erdgas;
- Verbrennungsluft.

An Hand von Literaturangaben [1, 2, 3, 4] kann die in Tabelle 4.1 wiedergegebene geschätzte Zusammenstellung der stofflichen Einträge eingefügt werden. Die verwendete Literatur enthielt keine Information bezüglich der Verbreitung der Mengen im menschlichen Körper. Die in Tabelle 4.1 angegebenen Mengen können zwischen Körpern variieren. Für eine Reihe von Bestandteilen, die vor allem im Sargmaterial vorkommen können, waren seitens der TNO keine Angaben verfügbar.

Bestandteil	Einheit	Körper	Sarg	Erdgas	
Al	ppm	1,4	N.B.		
As	ppm	0,2	0		
Au	ppm	< 0,01	N.B.		
Ва	ppm	0,23	N.B.		
Cd	ppm	0,43	0,290		
Со	ppm	< 0,04	N.B.		
Cr	ppm	< 0,09	0,966		
Cu	ppm	1,4	9,662		
Mn	ppm	0,3	77,294		
Мо	ppm	< 0,07	N.B.		
Ni	ppm	< 0,14	0,483		
Pb	ppm	1,1	6,763		
Sb	ppm	< 1,3	0		
Se	ppm	A	0		
Sn	ppm	0,43	N.B.		
Те	ppm	A	N.B.		
V	ppm	0,3	N.B.		
Zn	ppm	33	21,256		
Hg	ppm	A	0		
Cl	m%	0,15	0,15		
S	m%	0,25	0,0155		
Р	m%	1,0	N.B.		
F	m%	0,02	0,290 ppm		
N	m%	3,0	3,0	21,6	N.B. = Nicht b
С	m%	18,0	42,5	57,5	= Nicht vorh

Tabelle 4.1: Zusammenstellung der stofflichen Einträge

Für die Berechnungen wurde von folgender Zusammensetzung der trockenen Luft ausgegangen:

- Stickstoff (N₂): 78,10 vol%
- Sauerstoff (O₂): 20,94 vol%
- Kohlenstoffdioxid (CO₂): 0,03 vol%

4.3 Ergebnisse zum Kaltstartbetrieb

Der Kaltstartprozess wurde bei drei Kremationen untersucht. In Tabelle 4.2 sind das Einfuhrgewicht, das Geschlecht der Verstorbenen, der Gasverbrauch und die Dauer jedes Prozesses angegeben.

Prozess- Nr.	Sarg [kg]	Körper [kg]	Geschlecht	Gasverbrauch [m ³ /Prozess]	Prozessdauer [min]
1	44	61,55	W	83,1	150
2	44	57,65	Μ	53,7	127
3	44	59,95	Μ	57,0	130

Tabelle 4.2: Eintrag im Kaltstartbetrieb

4.3.1 Stoffliche Einträge

An Hand der aus der Literatur bekannten Angaben - vgl. Tabelle 4.1 - können aus der Summe der Einfuhrgewichte und den Gasverbräuchen die jeweiligen Gesamteinträge berechnet werden. Die Ergebnisse sind in Tabelle 4.3 dargestellt. Die Menge des Quecksilbers in den stofflichen Einträgen basiert auf den Angaben, die in Tabelle 4.4 dargestellt sind. Dort ist die Menge Quecksilber angegeben, die dem Prozess hinzugefügt wurde.

Bestandteil	Einheit	Prozess 1	Prozess 2	Prozess 3
Al	mg	88	82	86
As	mg	12	12	12
Au	mg	1	1	1
Ва	mg	14	13	14
Cd	mg	39	37	38
Со	mg	3	2	3
Cr	mg	48	48	48
Cu	mg	513	507	511
Mn	mg	3419	3417	3418
Мо	mg	4	4	4
Ni	mg	30	29	30
Pb	mg	368	363	366
Sb	mg	80	75	78
Se	mg	N.B.	N.B.	N.B.
Sn	mg	26	25	26
Те	mg	N.B.	N.B.	N.B.
V	mg	18	16	17
Zn	mg	2958	2829	2905
Hg	mg	2857	2856	2853
CI	g	158,3	152,5	156,0
S	g	160,7	151,0	156,7
P	g	615,5	576,5	599,5
F	g	12,3	11,5	12,0
N	kg	17,98	12,62	13,23
С	kg	69,20	54,54	56,40

Tabelle 4.3: Kaltstartbetrieb - stoffliche Einträge, prozessbezogen

Prozess-Nr.	Menge Quecksilber-Amalgam [g]	Menge Quecksilber [g]
1	5,013	2,857
2	5,011	2,856
3	5,006	2,853

Tabelle 4.4: Menge des hinzugefügten Quecksilbers und Quecksilber-Amalgams

4.3.2 Stoffliche Austräge

Bei Kremationsprozessen kann zwischen folgenden stofflichen Austrägen unterschieden werden:

- Rostasche;
- Flugasche;
- Rauchgas.

In Tabelle 4.5 sind die jeweiligen Mengen pro Prozess angegeben. Der Rauchgasaustrag wurde an Hand des Erdgasverbrauchs, des gemessenen O₂-Gehalts der Rauchgase, dem Gewicht sowie der Zusammensetzung von Körper und Sarg errechnet.

Prozess-Nr.	Rostasche [g]	Flugasche [g]	Rauchgase [m ³ ind.]
1	2152	61	2241
2	3149	29	1742
3	3634	24	1901

In Tabelle 4.6 bis einschließlich Tabelle 4.8 sind für die drei Prozesse die Gehalte der untersuchten Bestandteile für jeden gemessenen stofflichen Austrag dargestellt.

Bestandteil	Rostasche [mg/kg]	Flugasche [mg/kg]	Rauchgase [mg/m ³ ind.]
Al	12000	3487	0,012
As	3,5	6	0,001
Au	170	16	0,002
Ва	290	396	0,0007
Cd	2,3	66	0,0002
Со	2	8	0,0004
Cr	92,5	198	0,0039
Cu	360	269	0,0069
Mn	410	1086	0,0008
Мо	3	24	0,0031
Ni	97	86	0,0039
Pb	3	864	0,0038
Sb	5	158	0,002
Se	5	24	0,0022
Sn	17	197	0,0028
Те	5	30	0,009
V	460	147	0,002
Zn	1135	8082	0,0063
Hg	0,21	76	1,442
Cl	3350	226624	
S	3900	43582	
Р	155000	7845	
Phosphate (als P ₂ O ₅)	12000	23772	
Lösliches F	2,25	404	
Lösliches Cl	4150	226624	
N	590	792	
CI-			13,7
F ⁻			0,045

Tabelle 4.6: Ergebnisse Kaltstartbetrieb, Bestimmung der Bestandteile: Prozess 1

Bestandteil	Rostasche	Flugasche [mg/kg]	Rauchgase [mg/m ³ ind.]
	[mg/kg]		
Al	5750	1860	0,0093
As	3	34	0,001
Au	5	27	0,002
Ва	445	296	0,0006
Cd	0,3	63	0,0002
Со	2,5	13	0,0004
Cr	185	728	0,0018
Cu	185	472	0,0018
Mn	560	472	0,0009
Мо	3	39	0,0018
Ni	56	61	0,0013
Pb	3	1321	0,0035
Sb	5	104	0,002
Se	5	28	0,002
Sn	99	1927	0,0042
Те	5	24	0,009
V	170	17	0,002
Zn	375	12264	0,009
Hg	0,05	34	0,874
Cl	1550	308625	
S	3150	47170	
Р	165000	6604	
Phosphate (als P ₂ O ₅)	7450	28302	
Lösliches F	1,5	512	
Lösliches Cl	430	308625	
Ν	1350	1348	
Cl-			20,9
F ⁻			0,054

Tabelle 4.7: Ergebnisse Kaltstartbetrieb, Bestimmung der Bestandteile: Prozess 2

Bestandteil	Rostasche [mg/kg]	Flugasche [mg/kg]	Rauchgase [mg/m ³ ind.]
Al	4100	10339	0,012
As	3	28	0,001
Au	18	34	0,002
Ва	410	1237	0,0007
Cd	0,3	81	0,0002
Со	5,5	32	0,0004
Cr	65	729	0,0034
Cu	52	475	0,0057
Mn	535	2475	0,0015
Mo	3	42	0,0013
Ni	23,5	61	0,0039
Pb	3	1390	0,0053
Sb	5	154	0,002
Se	5	42	0,002
Sn	13	559	0,0031
Те	5	74	0,008
V	37,5	86	0,002
Zn	775	13898	0,013
Hg	0,05	229	1,481
CI	3100	164407	
S	4050	74576	
P	160000	17627	

Bestandteil	Rostasche [mg/kg]	Flugasche [mg/kg]	Rauchgase [mg/m ³ ind.]
Phosphate	18000	22881	
(als P ₂ O ₅)			
Lösliches F	1,5	441	
Lösliches Cl	1100	164407	
N	1750	1695	
Cl			18,4
F⁻			0,051

Tabelle 4.8 Kaltstartbetrieb, Bestimmung der Bestandteile: Prozess 3

Während der Studie wurden zudem kontinuierliche Messungen durchgeführt, um den Gehalt von O₂, CO₂, C_xH_y, NO_x und SO₂ und die Rauchgastemperatur zu bestimmen. In Tabelle 4.9 sind die durchschnittlichen Konzentrationen und die durchschnittliche Rauchgastemperatur pro Prozess angegeben. Zudem ist in dieser Tabelle das Ergebnis der Bestimmung der Menge der Flugasche in den Rauchgasen angegeben.

Bestandteil	Einheit	Prozess 1	Prozess 2	Prozess 3
O ₂	vol%	12,0	12,3	12,7
CO ₂	vol%	5,5	5,6	5,2
со	mg/m ³ ind.	22	23	25
C _x H _y	mg/m ³ ind.	1,2	1,0	0,9
NOx	mg/m ³ ind.	164	255	257
SO ₂	mg/m ³ ind.	31	79	80
Flugasche	mg/m ³ ind.	27	17	12
Temperatur	°C	622	652	649

Tabelle 4.9: Ergebnisse Kaltstartbetrieb, durchschnittliche Konzentration der Rauchgasbestandteile und der Rauchgastemperatur während des Prozesses

In Anhang A.10 bis einschließlich A.12 ist der Verlauf der Konzentrationen grafisch wiedergegeben.

4.3.3 Massebilanzen

Mit den ermittelten Ergebnissen der stofflichen Ein- und Austräge wurden für die Bestandteile jeweils Massebilanzen aufgestellt. In Tabelle 4.10 bis einschließlich Tabelle 4.12 sind für die Bestandteile die Ein- und Ausgangmenge bei jedem untersuchen Prozess angegeben. An Hand dieser Daten wurde die zurückbleibende Asche prozentual der Eingangsmenge gegenübergestellt.²

² <u>Beispiel:</u> Eine zu 100% ausgeglichene Bilanz besteht in nachfolgender Tabelle nur bei Zink, bei Chrom enthält die zurückbleibende Asche das 4,6-fache, bei Nickel das 7,4-fache des Eintrags.

<u>Hinweis:</u> Sargbeigaben wie z.B. Geruchsmaskierer (Duftstoffe), Bekleidung, und insbesondere die erst durch die aktuelle Fachdiskussion bekannte Chrom-/Nickelerosion der Spezialstähle im Ofen konnten aufgrund der damaligen Kenntnislage im Rahmen dieser Studie nicht identifiziert werden.

Smit-R	eport
--------	-------

Bestandteil	Eingang [mg]	Ausgang [mg]	Bilanz [%]	
Al	88	26.10 ³	30000	
As	12	11	88	
Au	1	372	42000	
Ва	14	650	4600	
Cd	39	9	24	
Со	3	6	22	
Cr	48	220	460	
Cu	513	807	160	
Mn	3419	950	28	
Мо	4	15	340	
Ni	30	223	740	
Pb	368	68	18	
Sb	80	25	32	
Se	N.B.	17		
Sn	25	55	21	
Те	N.B.	32		
V	18	1004	5700	
Zn	2958	2950	100	
Hg	2857	3236	110	
Cl	158.10 ³	52.10 ³	33	
S	161.10 ³	45.10 ³	28	
Р	615.10 ³	35.10 ³	56	
F	12.10 ³	0,1.10 ³	1	ľ
N	18.10 ⁶	0,1.10 ⁶	1	
С	69.10 ⁶	64.10 ⁶	93	

- = Nicht analysiert.N.B. = Nicht bekannt.

Tabelle A 10. Massen	hilanz Kaltst	arthetrieh	Prozess 1
TUDENE 4.10. WUSSEN	σπατιζ καπει	untbetrieb	PI 02855 I

Bestandteil Eingang [mg] Ausgang [mg] Bilanz [%] Al 82 18.10 ³ 22000 As 12 13 110 Au 1 20 2500 Ba 13 1411 11000 Cd 37 3 8 Co 2 9 370 Cr 48 607 1300 Cu 507 599 120 Mn 3417 1779 52 Mo 4 14 340 Ni 29 180 610 Pb 363 54 15 Sb 75 23 30 Se N.B. 20 Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53				
Al82 18.10^3 22000 As1213110Au120 2500 Ba13141111000Cd3738Co29370Cr486071300Cu507599120Mn3417177952Mo414340Ni29180610Pb3635415Sb752330SeN.B.20Sn253741500TeN.B.32V165403300Zn2829154955Hg2856152353Cl152.10^350.10^333S151.10^379.10^353P576.10^3530.10^392F11.10^30,1.10^61N13.10^60,1.10^61C55.10^651.10^695	Bestandteil	Eingang [mg]	Ausgang [mg]	Bilanz [%]
As1213110Au1202500Ba13141111000Cd3738Co29370Cr486071300Cu507599120Mn3417177952Mo414340Ni29180610Pb3635415Sb752330SeN.B.20Sn253741500TeN.B.32V165403300Zn2829154955Hg2856152353Cl152.10 ³ 50.10 ³ 33S151.10 ³ 79.10 ³ 53P576.10 ³ 530.10 ³ 92F11.10 ³ 0,1.10 ⁶ 1N13.10 ⁶ 0,1.10 ⁶ 1C55.10 ⁶ 51.10 ⁶ 95	AI	82	18.10 ³	22000
Au1202500Ba13141111000Cd3738Co29370Cr486071300Cu507599120Mn3417177952Mo414340Ni29180610Pb3635415Sb752330SeN.B.20Sn253741500TeN.B.32V165403300Zn2829154955Hg2856152353Cl152.10 ³ 50.10 ³ 33S151.10 ³ 79.10 ³ 53P576.10 ³ 530.10 ³ 92F11.10 ³ 0,1.10 ⁶ 1N13.10 ⁶ 0,1.10 ⁶ 1C55.10 ⁶ 51.10 ⁶ 95	As	12	13	110
Ba 13 1411 11000 Cd 37 3 8 Co 2 9 370 Cr 48 607 1300 Cu 507 599 120 Mn 3417 1779 52 Mo 4 14 340 Ni 29 180 610 Pb 363 54 15 Sb 75 23 30 Se N.B. 20 Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10 ³ 50.10 ³ 33 S 151.10 ³ 79.10 ³ 53 P 576.10 ³ 530.10 ³ 92 F 11.10 ³ 0,1.10 ⁶	Au	1	20	2500
Cd 37 3 8 Co 2 9 370 Cr 48 607 1300 Cu 507 599 120 Mn 3417 1779 52 Mo 4 14 340 Ni 29 180 610 Pb 363 54 15 Sb 75 23 30 Se N.B. 20 Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10 ³ 50.10 ³ 33 S 151.10 ³ 79.10 ³ 53 P 576.10 ³ 530.10 ³ 92 F 11.10 ³ 0,1.10 ⁶ 1 N 13.10 ⁶ 0,1.10 ⁶	Ва	13	1411	11000
Co 2 9 370 Cr 48 607 1300 Cu 507 599 120 Mn 3417 1779 52 Mo 4 14 340 Ni 29 180 610 Pb 363 54 15 Sb 75 23 30 Se N.B. 20 Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10 ³ 50.10 ³ 33 S 151.10 ³ 79.10 ³ 53 P 576.10 ³ 530.10 ³ 92 F 11.10 ³ 0,1.10 ⁶ 1 N 13.10 ⁶ 0,1.10 ⁶ 1 C 55.10 ⁶ 51.10 ⁶	Cd	37	3	8
Cr 48 607 1300 Cu 507 599 120 Mn 3417 1779 52 Mo 4 14 340 Ni 29 180 610 Pb 363 54 15 Sb 75 23 30 Se N.B. 20 Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10 ³ 50.10 ³ 33 S 151.10 ³ 79.10 ³ 53 P 576.10 ³ 530.10 ³ 92 F 11.10 ³ 0,1.10 ³ 1 N 13.10 ⁶ 0,1.10 ⁶ 1 C 55.10 ⁶ 51.10 ⁶ 95	Со	2	9	370
Cu 507 599 120 Mn 3417 1779 52 Mo 4 14 340 Ni 29 180 610 Pb 363 54 15 Sb 75 23 30 Se N.B. 20 Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10 ³ 50.10 ³ 33 S 151.10 ³ 79.10 ³ 53 P 576.10 ³ 530.10 ³ 92 F 11.10 ³ 0,1.10 ³ 1 N 13.10 ⁶ 0,1.10 ⁶ 1 C 55.10 ⁶ 51.10 ⁶ 95	Cr	48	607	1300
Mn 3417 1779 52 Mo 4 14 340 Ni 29 180 610 Pb 363 54 15 Sb 75 23 30 Se N.B. 20 Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10 ³ 50.10 ³ 33 S 151.10 ³ 79.10 ³ 53 P 576.10 ³ 530.10 ³ 92 F 11.10 ³ 0,1.10 ³ 1 N 13.10 ⁶ 0,1.10 ⁶ 1 C 55.10 ⁶ 51.10 ⁶ 95	Cu	507	599	120
Mo 4 14 340 Ni 29 180 610 Pb 363 54 15 Sb 75 23 30 Se N.B. 20 Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10 ³ 50.10 ³ 33 S 151.10 ³ 79.10 ³ 53 P 576.10 ³ 530.10 ³ 92 F 11.10 ³ 0,1.10 ³ 1 N 13.10 ⁶ 0,1.10 ⁶ 1 C 55.10 ⁶ 51.10 ⁶ 95	Mn	3417	1779	52
Ni29180610Pb 363 54 15Sb 75 23 30 SeN.B. 20 $$ Sn 25 374 1500 TeN.B. 32 $$ V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10^3 50.10^3 33 S 151.10^3 79.10^3 53 P 576.10^3 530.10^3 92 F 11.10^3 $0,1.10^3$ 1 N 13.10^6 $0,1.10^6$ 1 C 55.10^6 51.10^6 95	Mo	4	14	340
Pb 363 54 15 Sb 75 23 30 SeN.B. 20 $$ Sn 25 374 1500 TeN.B. 32 $$ V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10^3 50.10^3 33 S 151.10^3 79.10^3 53 P 576.10^3 530.10^3 92 F 11.10^3 $0,1.10^6$ 1 N 13.10^6 $0,1.10^6$ 1 C 55.10^6 51.10^6 95	Ni	29	180	610
$ \begin{array}{ c c c c c c c } Sb & 75 & 23 & 30 \\ Se & N.B. & 20 & \\ Sn & 25 & 374 & 1500 \\ \hline Te & N.B. & 32 & \\ V & 16 & 540 & 3300 \\ Zn & 2829 & 1549 & 55 \\ Hg & 2856 & 1523 & 53 \\ Cl & 152.10^3 & 50.10^3 & 33 \\ S & 151.10^3 & 79.10^3 & 53 \\ P & 576.10^3 & 530.10^3 & 92 \\ F & 11.10^3 & 0,1.10^3 & 1 \\ N & 13.10^6 & 0,1.10^6 & 1 \\ C & 55.10^6 & 51.10^6 & 95 \\ \end{array} $	Pb	363	54	15
$ \begin{array}{ c c c c c c } Se & N.B. & 20 & \\ Sn & 25 & 374 & 1500 \\ \hline Te & N.B. & 32 & \\ V & 16 & 540 & 3300 \\ Zn & 2829 & 1549 & 55 \\ Hg & 2856 & 1523 & 53 \\ Cl & 152.10^3 & 50.10^3 & 33 \\ S & 151.10^3 & 79.10^3 & 53 \\ P & 576.10^3 & 530.10^3 & 92 \\ F & 11.10^3 & 0,1.10^3 & 1 \\ N & 13.10^6 & 0,1.10^6 & 1 \\ C & 55.10^6 & 51.10^6 & 95 \\ \end{array} $	Sb	75	23	30
Sn 25 374 1500 Te N.B. 32 V 16 540 3300 Zn 2829 1549 55 Hg 2856 1523 53 Cl 152.10 ³ 50.10 ³ 33 S 151.10 ³ 79.10 ³ 53 P 576.10 ³ 530.10 ³ 92 F 11.10 ³ 0,1.10 ³ 1 N 13.10 ⁶ 0,1.10 ⁶ 1 C 55.10 ⁶ 51.10 ⁶ 95	Se	N.B.	20	
$ \begin{array}{ c c c c c c } \hline Te & N.B. & 32 & \\ \hline V & 16 & 540 & 3300 \\ \hline Zn & 2829 & 1549 & 55 \\ \hline Hg & 2856 & 1523 & 53 \\ \hline Cl & 152.10^3 & 50.10^3 & 33 \\ \hline S & 151.10^3 & 79.10^3 & 53 \\ \hline P & 576.10^3 & 530.10^3 & 92 \\ \hline F & 11.10^3 & 0,1.10^3 & 1 \\ \hline N & 13.10^6 & 0,1.10^6 & 1 \\ \hline C & 55.10^6 & 51.10^6 & 95 \\ \hline \end{array} $	Sn	25	374	1500
$ \begin{array}{ c c c c c c } V & 16 & 540 & 3300 \\ Zn & 2829 & 1549 & 55 \\ Hg & 2856 & 1523 & 53 \\ Cl & 152.10^3 & 50.10^3 & 33 \\ S & 151.10^3 & 79.10^3 & 53 \\ P & 576.10^3 & 530.10^3 & 92 \\ F & 11.10^3 & 0,1.10^3 & 1 \\ N & 13.10^6 & 0,1.10^6 & 1 \\ C & 55.10^6 & 51.10^6 & 95 \\ \end{array} $	Те	N.B.	32	
$ \begin{array}{ c c c c c c c } Zn & 2829 & 1549 & 55 \\ Hg & 2856 & 1523 & 53 \\ Cl & 152.10^3 & 50.10^3 & 33 \\ S & 151.10^3 & 79.10^3 & 53 \\ P & 576.10^3 & 530.10^3 & 92 \\ F & 11.10^3 & 0,1.10^3 & 1 \\ N & 13.10^6 & 0,1.10^6 & 1 \\ C & 55.10^6 & 51.10^6 & 95 \\ \end{array} $	V	16	540	3300
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn	2829	1549	55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hg	2856	1523	53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl	152.10 ³	50.10 ³	33
$ \begin{array}{c ccccc} P & 576.10^3 & 530.10^3 & 92 \\ F & 11.10^3 & 0,1.10^3 & 1 \\ N & 13.10^6 & 0,1.10^6 & 1 \\ C & 55.10^6 & 51.10^6 & 95 \\ \end{array} $	S	151.10 ³	79.10 ³	53
$ \begin{array}{ccccc} F & 11.10^3 & 0,1.10^3 & 1 \\ N & 13.10^6 & 0,1.10^6 & 1 \\ C & 55.10^6 & 51.10^6 & 95 \\ \end{array} $	Р	576.10 ³	530.10 ³	92
$ \begin{array}{cccc} N & 13.10^6 & 0,1.10^6 & 1 \\ C & 55.10^6 & 51.10^6 & 95 \end{array} $	F	11.10 ³	0,1.10 ³	1
C 55.10 ⁶ 51.10 ⁶ 95	N	13.10 ⁶	0,1.10 ⁶	1
	С	55.10 ⁶	51.10 ⁶	95

Smit-Report

Bestandteil	Eingang [mg]	Ausgang [mg]	Bilanz [%]
Al	86	15.10 ³	18000
As	12	14	120
Au	1	70	8200
Ва	14	1520	11000
Cd	38	3	9
Со	3	22	840
Cr	48	260	540
Cu	511	211	41
Mn	3418	2005	59
Мо	4	14	340
Ni	30	94	320
Pb	366	54	15
Sb	78	26	33
Se	N.B.	23	
Sn	26	66	260
Te	N.B.	36	
V	17	142	830
Zn	2905	3169	109
Hg	2853	2820	99
Cl	156.10 ³	50.10 ³	32
S	157.10 ³	91.10 ³	58
P	599.10 ³	611.10 ³	102
F	12.10 ³	0,1.10 ³	1
N	13.10 ⁶	0,2.10 ³	1
С	56.10 ⁶	52.10 ⁶	92

Tabelle 4.12 Massenbilanz Kaltstartbetrieb Prozess 3

4.4 Ergebnisse zum Warmstartprozess

Diesbezüglich wurden drei Kremationsvorgängen untersucht. In Tabelle 4.13 sind Einfuhrgewicht, Geschlecht, Gasverbrauch und Dauer eines jeden Prozesses angegeben.

Prozess-Nr.	Sarg [kg]	Körper [kg]	Geschlecht	Gasverbrauch [m ³ /Prozess]	Prozessdauer [min]
1	43,78	49,97	М	17,3	68
2	43,96	79,94	W	7,0	74
3	44,20	62,40	W	3,4	69

Tabelle 4.13 E	infuhrdaten	Warmstartbetrieb
----------------	-------------	------------------

4.4.1 Stoffliche Einträge

An Hand der allgemeinen Zusammensetzungsangaben, so wie in Tabelle 4.1 dargestellt, können kombiniert mit dem Einfuhrgewicht und dem Gasverbrauch die totalen stofflichen Einträge berechnet werden. Das Ergebnis dieser Berechnung ist in Tabelle 4.14 angegeben. Die Menge Quecksilber in den stofflichen Einträgen basiert auf den Angaben wie in Tabelle 4.15 gezeigt, worin die Menge Quecksilber angegeben ist, die pro Prozess hinzugefügt wurde.

Smit-Report

Bestandteil	Einheit	Prozess 1	Prozess 2	Prozess 3
Al	mg	71	114	89
As	mg	10	16	12
Au	mg	1	1	1
Ва	mg	11	18	14
Cd	mg	34	47	40
Со	mg	2	3	3
Cr	mg	47	50	48
Cu	mg	494	539	516
Mn	mg	3400	3421	3434
Мо	mg	4	6	4
Ni	mg	28	33	30
Pb	mg	353	389	370
Sb	mg	65	104	81
Se	mg	N.B.	N.B.	N.B.
Sn	mg	21	34	27
Те	mg	N.B.	N.B.	N.B.
V	mg	14	23	18
Zn	mg	2570	3561	2990
Hg	mg	2468	2469	2472
Cl	g	74,96	119,9	93,60
S	g	124,9	199,9	156,0
Р	g	499,7	799,4	624,0
F	g	10,01	16,00	12,49
N	kg	4,67	3,73	2,57
С	kg	34,71	35,29	30,52

 Tabelle 4.14
 Warmstartbetrieb, Zusammenstellung der stofflichen Einträge pro Prozess

Prozessnummer	Menge Quecksilberamalgam [g]	Menge Quecksilber [g]
1	5,006	2,468
2	5,009	2,469
3	5,014	2,472

 Tabelle 4.15
 Warmstartbetrieb, Menge des hinzugefügten Quecksilbers u. Quecksilber-Amalgams

4.4.2 Stoffliche Austräge

Bei Kremationsprozessen können die folgenden stofflichen Austräge unterschieden werden:

- Rostasche;
- Flugasche;
- Rauchgase.

In Tabelle 4.16 stehen die Mengen für jeden dieser Austräge pro Prozess angegeben. Der Rauchgasertrag wurde an Hand von Erdgasverbrauch, dem gemessenen O₂-Gehalt der Rauchgase und dem Gewicht und der Zusammenstellung von Körper und Sarg berechnet.

Prozessnummer	Rostasche [g]	Flugasche [g]	Rauchgase [m ³ / ind]
1	2811	112	2674
2	3183	117	2101
3	2141	99	2223

Bestandteil	Rostasche [mg/kg]	Flugasche [mg/kg]	Rauchgase	
		0 0.0.	[mg/m ³ ind]	
Al	1210	6052	0,00003	
As	0,76	135	0,0001	
Au	0,15	14	0,0001	
Ва	67	476	0,0007	
Cd	0,12	86	0,0001	
Со	1,5	14	0,0005	
Cr	15	331	0,0069	
Cu	780	1160	0,0039	
Mn	220	973	0,0049	
Мо	1,1	58	0,0008	
Ni	170	173	0,027	
Pb	2,6	3026	0,0010	
Sb	1,3	259	0,0001	
Se	0,1	7	0,0001	
Sn	3,6	115	0,0001	
Те	0,2	14	0,0001	
V	8,4	43	0,0014	
Zn	250	29539	0,017	
Hg	0,25	22	0,860	
Cl	523	245677		
S	373	48271		
Р	159000	9366		
Phosphate*	7,5	9692		
Lösliches F	0,76	223		
Lösliches Cl	99	245677		
Ν	490	1297		ľ
Cl⁻			11,7	
F ⁻			0,075	

In Tabelle 4.17 bis einschließlich 4.19 sind für die drei untersuchten Prozesse die ermittelten Bestandteile pro stofflichem Austrag aufgeführt.

Tabelle 4.17	Warmstartbetrieb,	Bestimmung Geha	lt der Bestandteile Prozess 1
--------------	-------------------	-----------------	-------------------------------

Bestandteil	Rostasche [mg/kg]	Flugasche [mg/kg]	Rauchgase [mg/m ³ ind]
Al	890	2284	0,00001
As	0,84	221	0,0001
Au	48	11	0,0001
Ва	31	265	0,0004
Cd	0,12	152	0,0001
Со	1,6	12	0,0001
Cr	17	325	0,0032
Cu	187	492	0,0023
Mn	240	1109	0,0013
Мо	1,7	87	0,0003
Ni	29	168	0,006
Pb	5,8	5087	0,0004
Sb	0,87	509	0,0001
Se	0,1	8	0,0002
Sn	28	498	0,0001
Те	0,2	11	0,0001
V	8,9	32	0,0018

a	
Smit-Re	port

Bestandteil	Rostasche [mg/kg]	Flugasche [mg/kg]	Rauchgase [mg/m ³ ind]
Zn	46	62229	0,012
Hg	0,25	16	0,935
Cl	582	115801	
S	357	99026	
Р	162000	9199	
Phosphate*	7,5	3235	
Lösliches F	0,55	157	
Lösliches Cl	84	115801	
N	990	308	
Cl⁻			9,81
F⁻			0,12

Tabelle 4.18	Warmstartbetrieb,	Bestimmung	Gehalte Prozess 2
--------------	-------------------	------------	-------------------

Bestandteil	Rostasche [mg/kg]	Flugasche [mg/kg]	Rauchgase
			[mg/m ³ ind]
AI	3000	2113	0,00001
As	0,72	140	0,0001
Au	0,15	12	0,0001
Ba	147	239	0,0005
Cd	0,12	119	0,0001
Co	2,8	12	0,0001
Cr	28	525	0,0028
Cu	250	1278	0,003
Mn	580	531	0,0017
Mo	1,9	26	0,0002
Ni	100	107	0,0081
Pb	1,04	3027	0,0014
Sb	1,9	352	0,0001
Se	0,1	6	0,0001
Sn	19	430	0,0001
Te	0,2	12	0,0001
V	13,6	24	0,0014
Zn	96	41194	0,020
Hg	0,25	18	0,778
CI	448	140299	
S	433	81791	
P	159000	11940	
fosfaten (als P2O5	,) 7,5	8121	
opl. F	1,26	167	
opl. Cl	50	140299	
N	730	549	
CI-			9,27
F			0,087

 Tabelle 4.19
 Warmstartbetrieb, Bestimmung der Gehalte Prozess 3

Während der Untersuchung wurden auch kontinuierliche Aufzeichnungsmessungen der Rauchgase nach dem Luftinjektor durchgeführt, um den Gehalt an O₂, CO₂, C_xH_y, NO_x und SO₂ sowie die Rauchgastemperatur zu bestimmen. Tabelle 4.20 zeigt die durchschnittlichen Konzentrationen und die durchschnittliche Abgastemperatur pro Prozess. Diese Tabelle zeigt auch die Ergebnisse des Flugstaubgehalts der Rauchgase.

Component	Eenheid	Proces 1	Proces 2	Proces 3
02	vol%	17,4	16,8	17,7
CO,	vol%	2,6	3,0	2,5
co	mg/m ³ ind	48	28	15
C _v H _v	mg/m ³ ind	167	101	24
NO,	mg/m ³ ind	179	148	160
SO2	mg/m ³ ind	71	132	56
vliegstof	mg/m ³ ind	39	51	41
Temperatuur	°C	291	338	312

Tabelle 4.20 Rauchgaskomponenten und Rauchgastemperatur, mittlere Konz., im Warmstartofen

Die zeitliche Entwicklung der Konzentrationen ist in den Anhängen A.7 bis A.9 grafisch dargestellt.

4.4.3 Massenbilanz

Auf Basis der Eingangs- und Ausgangsströme kann eine Massenbilanz für jedes untersuchte Element erstellt werden. Die Tabellen 4.21 bis 4.23 zeigen deren Eingangs- und Ausgangsgrößen. Auf Basis dieser Daten wurde der Verhältnis-Prozentsatz der Ausgangsmenge zur Eingangsmenge ermittelt.

Bestandteil	Eingang[mg]	Ausgang [mg]	Verhältnis %
Al	71	3993	5590
As	10	16	156
Au	1	2	299
Ba	11	237	2070
Cd	34	9	27
Co	2	7	320
Cr	47	93	199
Cu	494	2316	469
Mn	3400	727	21
Mo	4	11	305
Ni	28	567	2010
Pb	353	306	87
Sb	65	29	45
Se	N.B.	1	
Sn	21	22	101
Те	N.B.	2	
V	14	32	222
Zn	2570	3635	141
Hg	2468	2301	93
CI	75.10 ³	57.10 ³	76
S	125.10 ³	103.10 ³	82
Р	500.10 ³	448.10 ³	90
F	10.10 ³	0,2.10 ³	2
N	4,7.10 ⁶	0,2.10 ⁶	3
С	35.10 ⁶	38.10 ⁶	110

Tab. 4.21

Massebilanz Warmstartofen, Prozess 1

Smit-Report

Bestandteil	Eingang[mg]	Ausgang [mg]	Verhältnis %
AI	114	3096	2710
As	16	28	178
Au	1	154	13500
Ba	18	130	712
Cd	47	18	38
Co	3	7	195
Cr	50	98	198
Cu	539	657	122
Mn	3421	894	26
Mo	6	16	280
Ni	33	125	383
Pb	389	605	156
Sb	104	62	59
Se	N.B.	2	
Sn	34	147	428
Те	N.B.	2	
V	23	36	157
Zn	3561	7342	206
Hg	2468	1966	80
CI	120.10 ³	36.10 ³	30
S	200.10 ³	160.10 ³	80
Р	799.10 ³	517.10 ³	65
F	16.10 ³	0,3.10 ³	2
N	3,7.106	0,1.10 ⁶	3
С	35.10 ⁶	37.10 ⁶	104

Tab. 4.22

Massebilanz Warmstartofen, Prozess 2

Bestandteil	Eingang[mg]	Ausgang [mg]	Verhältnis %
Al	89	6634	7440
As	12	16	126
Au	1	2	198
Ba	14	340	2380
Cd	40	12	31
Co	3	7	278
Cr	48	119	245
Cu	516	670	130
Mn	3434	1298	38
Mo	4	7	159
Ni	30	243	802
Pb	370	307	83
Sb	81	39	48
Se	N.B.	1	
Sn	27	84	313
Те	N.B.	2	
V	18	35	195
Zn	2990	4356	146
Hg	2468	1731	70
CI	93.10 ³	36.10 ³	38
S	156.10 ³	79.10 ³	50
Р	624.10 ³	342.10 ³	55
F	12.10 ³	0,2.10 ³	2
N	2,6.10 ⁶	0,1.10 ⁶	5
С	30.10 ⁶	33.10 ⁶	108

Tab. 4.23Massebilanz Warmstartofen, Prozess 3

4.5 Einfluss der Knochenmühle auf die Schwermetallgehalte der Aschen

Um mehr zum möglichen Einfluss einer Knochenmühle auf den Schwermetallgehalt der Rostasche zu erfahren, wurde sowohl aus dem Warmstart- als auch aus dem Kaltstartofen gemahlene und ungemahlene Rostasche entnommen. In Tabelle 4.24 sind die Analyseergebnisse für diese Proben aufgeführt.

Component	Koude-st	art oven	Warme-st	art oven
	Ongemalen [mg/kg]	Gemalen [mg/kg]	Ongemalen [mg/kg]	Gemalen [mg/kg]
AI	2050	5750	164	890
As	3	З	0,41	0,84
Au	5	5	0,15	48
Ba	88	445	32	31
Cd	0,3	0,3	0,12	0,12
Co	2	2,5 0,38		1,6
Cr	62	185 2,8		17
Cu	79	185	4,2	187
Mn	115	560	48	240
Mo	3	з	0,26	1,7
Ni	10,5	56	3,1	29
Pb	3	3	0,92	5,8
Sb	5	5	0,87	0,87
Se	5	5	0,1	0,1
Sn	8,5	99	2,4	28
Te	5	5	0,2	0,2
V	39,5	170	8,2	8,9
Zn	140	375	62	46
Hg	0,05	0,05	0,25	0,25
Totaal	2624	7857	330	1536

Tabelle 4.24 Einfluss der Knochenmühle auf den Schwermetallgehalt der Rostasche

Die in Tabelle 4.24 dargestellten Ergebnisse zeigen, dass mit dem Mahlen der Rostasche deren Schwermetallgehalt erhöht wird. Hier bedarf es jedoch folgender Anmerkung: Die ungemahlene Asche wurde vor der Probenahme mittels eines Magneten von metallischen Bestandteilen befreit. Anschließend wurde eine zufällige Probe aus dieser ungemahlenen Asche entnommen und sodann in der Knochenmühle gemahlen.

Es fällt auf, dass der absolute Anstieg des Schwermetallgehalts in der Asche so groß ist (1-5 g/kg Asche), dass diese Knochenmühlen eine relativ kurze Lebensdauer hätten, wenn dieser Anstieg ausschließlich auf den Verschleiß der Mühle zurückzuführen wäre. Es ist eher anzunehmen, dass ungemahlene Rostasche noch Metalle in der Probenprobe enthielt, z.B. Nägel, Reißverschlüsse, Knöpfe usw.

Die in Tabelle 4.24 angegebenen Ergebnisse zeigen jedoch, dass der Schwermetallgehalt zunimmt, es ist jedoch nicht möglich, im vorliegenden Zusammenhang eine genaue Herleitung zur Zunahme der Schwermetallmenge zu treffen. In der folgenden Tabelle 4.25 sind die relativen Erhöhungen des Schwermetallgehalts für jeden Ofentyp aufgeführt.

Bestandteil	Kaltstartofen	Warmstartofen
Al	180	443
As	0	105
Au	0	31900
Ba	406	-3
Cd	0	0
Co	25	321
Cr	198	507
Cu	134	4352
Mn	387	400
Mo	0	554
Ni	433	835
Pb	0	530
Sb	0	0
Se	0	0
Sn	1065	1067
Те	0	0
V	330	9
Zn	168	-26
Hg	0	0
Totaal	199	365

Tabelle 4.25 Relative Zunahme von Schwermetallen durch Einfluss der Knochenmühle

Es hat den Anschein, dass beim Warmstartbetrieb der Schwermetallgehalt der Rostasche im Vergleich zum Kaltstartbetrieb fast doppelt so hoch sein kann. Dies könnte ursächlich mit der unterschiedlichen Dauer der Mahlvorgänge und unterschiedlichen Mahlverfahren zusammen hängen. Beim Kaltstart wird ein Hammermahlwerk verwendet, der Mahlvorgang dauert ca. 1 Min. Beim Warmstart wird ein Kegelmahlwerk eingesetzt, bei der die Asche in ca. 20 Min. durchläuft. Betrachtet man jedoch den absoluten Anstieg der Schwermetalle, so kehrt sich das Verhältnis um.

Da der Einsatz einer Knochenmühle den Schwermetallgehalt in der Rostasche erhöht, wirkt sich dies auf die Berechnung der Massenbilanz für Schwermetalle aus. In Tabelle 4.26 sind die Schwermetallrückstände für beide Ofentypen basierend auf der gemahlenen und ungemahlenen Ofenasche aus Prozess 2 aufgeführt.

Component	Koude-s	start oven	Warme-start oven		
	Recovery (gemalen as) [%]	Recovery (ongemalen as) [%]	Recovery (gemalen as) [%]	Recovery (ongemalen as) [%]	
AI	22100	7920	2710	688	
As	111	111	178	169	
Au	2480	2480	13500	177	
Ba	10700	2180	712	730	
Cd	8	8	38	38	
Co	366	302	195	82	
Cr	1270	460	198	107	
Cu	118	52	122	14	
Mn	52	11	26	8	
Mo	335	335	280	200	
Ni	612	126	383	131	
Pb	15	15	156	152	
Sb	30	30	59	59	
Se					
Sn	1520	362	428	191	
Те					
V	3280	782	157	147	
Zn	55	29	206	208	
Hg	53	53	80	80	
Totaal	260	101	161	106	

Tabelle 4.26 Massebilanzverhältnis gemahlener und ungemahlener Rostasche, Warm- u. Kaltstartofen

Um die Einflüsse der Knochenmühle auf den Schwermetallgehalt der Rostasche belastbarer zu ermitteln, müssten mehr Schwermetallanalysen sowohl der gemahlenen als auch der ungemahlenen Rostaschen durchgeführt werden.

5. Bewertung

Die Ergebnisse der Emissionsuntersuchungen an beiden Ofentypen zeigen, dass die Massenbilanz für die meisten Komponenten nicht schlüssig ist. Einer der Hauptgründe dafür liegt wahrscheinlich in der Tatsache, dass vor der Einäscherung von den Körpern der Verstorbenen keine genauen Zahlen der Eingangsströme verfügbar sind. Schwermetallgehalte der Körper können sich im Vergleich zu vorliegenden Literaturdaten unterscheiden. Auch aufgrund schwermetallhaltiger Kleidung kann die Eintrittskonzentration erhöht sein.

Ein zweiter Grund ist der Einfluss der Knochenmühle auf den Schwermetallgehalt in der Ofenasche. Bei Massenbilanzen ungemahlener Rostaschen sind die Unterschiede geringer sind als bei gemahlenen Aschen. Um mehr Klarheit in der Zusammensetzung der Eingangsströme zu erhalten, wären Tests erforderlich, bei denen die Kleidung und Beschichtungen analysiert werden. Nachstehend soll zunächst das Analyseverfahren für beide untersuchten Ofentypen vorgestellt werden. Die Übersichtstabellen sind in Anhang A.13 und Anhang A.14 enthalten.

5.1 Einfluss der Bedienmannschaft

Während der Untersuchung wurde festgestellt, dass die Betriebstypen von Öfen vom Bedienpersonal gemäß den Anweisungen des Lieferanten betrieben wurden. Das Personal führt während des gesamten Prozesses regelmäßige Sichtprüfungen durch, um bei Bedarf manuell einzugreifen.

Sowohl im Kalt- als auch im Warmstartofen wurden die Ofen- und Nachbrenntemperaturen kontinuierlich unter Verwendung von mit der Installation verbundenen Thermoelementen aufgezeichnet. Die Ergebnisse (mit Ausnahme des Warmstartprozesses 1 aufgrund eines Fehlers im Aufzeichnungsgerät) sind in Anhang C enthalten. Dies zeigt, dass die Nachbrenntemperatur am Warmstartofen während des Prozesses zwischen ca. 750 ° variieren kann C und ca. 1030 °. In der folgenden Tabelle 5.1 sind die Prozentsätze in Bezug auf die Prozesszeit aufgeführt, zu denen die Nachbrenntemperatur im Warmstartofen unter 850° C bzw. 800° C lag.

Warmstartbetrieb	Prozent der Prozessdauer mit Nachbrenntemperatur geringer als 850°C	Prozent der Prozessdauer mit Nachbrenntemperatur geringer als 800°C		
Prozess 2	48%	32%		
Prozess 3	62%	30%		

Tabelle 5.1Nachbrenntemperatur Warmstartbetrieb, Prozent der Prozessdauer, währenddessen
die Temperatur niedriger als 850°C und 800°C ist

Beim Kaltstartbetrieb variiert die Nachbrenntemperatur während den drei untersuchten Prozessen zwischen ca. 500°C und 995°C. Hierbei muss angemerkt werden, dass die genannten 500°C nur beim Start des Prozesses auftraten, wonach sie innerhalb von ca. 5 bis 10 Minuten bis ca. 800°C stiegen.

In der nachfolgenden Tabelle 5.2 wird angegeben, wie viel Prozent der gesamten Prozessdauer die Nachbrenntemperatur im Kaltstartbetrieb niedriger als 850°C beziehungsweise 800°C ist.

Kaltstartbetrieb	Prozent der Prozessdauer mit Nachbrenntemperatur geringer als 850°C	Prozent der Prozessdauer mit Nachbrenntemperatur geringer als 800°C		
Prozess 1	97%	16%		
Prozess 2	92%	3%		
Prozess 3	89%	3%		

Tabelle 5.2Nachbrenntemperatur Kaltstartbetrieb, Prozent der Prozessdauer, währenddessen
die Temperatur niedriger als 850°C und 800°C ist

Aus oben angegebenen Daten geht hervor, dass die Nachbrenntemperatur im Kaltstartbetrieb im Allgemeinen niedriger ist als die für eine gute Verbrennung benötigten 850°C. Die Nachbrenntemperatur ist während des Prozesses allerdings nur während sehr kurzer Zeit niedriger als 800°C. Bei dem untersuchten Warmstartbetrieb ist die Nachbrenntemperatur 38 bis 52% der Prozessdauer

höher als 850°C. Allerdings sinkt die Nachbrenntemperatur selbst bei diesem Ofen während circa einem Drittel der Prozessdauer bis unter 800°C.

Für beide Ofentypen gilt, dass die Temperaturregulierung angepasst werden muss, um damit eine gute Verbrennung zu gewährleisten. Hierbei muss darauf geachtet werden, dass der Brennraum vor dem Einführen des Sarges schon auf mindestens 850°C aufgewärmt ist.

Aus der Untersuchung der Ofentemperaturen beider Ofentypen (siehe Anhang C) ergibt sich, dass die Ofentemperatur des Warmstartbetriebs im Durchschnitt höher ist als die des Kaltstartbetriebs. Aus der Bewertung der Ergebnisse ergibt sich, dass dies Konsequenzen für die Zusammensetzung der Rostasche und der Flugasche hat. Eine höhere Ofentemperatur kann zur Folge haben, dass Bestandteile der Rostasche verdampfen, um anschließend im Rauchgaskanal (niedrige Temperaturen) als Flugascheteilchen zu kondensieren.

5.2 Schwermetalle

In Abbildung 5.1 ist die prozentuale Verteilung der Schwermetalle in den stofflichen Austrägen wiedergegeben. Analysiert wurde: Al, As, Au, Ba, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Sn, Te, V und Zn.

Abbildung 5.1 Verteilung der Schwermetalle über die stofflichen Austräge.

In Abbildung 5.1 fällt auf, dass Schwermetalle im Kaltstartbetrieb zu mehr als 95% über die Rost/ Ofenasche ausgestoßen werden. Beim Warmstartbetrieb wird ca. 60-65% über die Rostasche ausgestoßen und ca. 35% über den Flugasche in den Rauchgasen. In den folgenden Tabellen 5.3 und 5.4 sind die prozentualen Verteilungen der Schwermetalle über die stofflichen Austräge pro Prozess angegeben.

Metall	Prozess 1			Prozess 2		Prozess 3			
	Rostasche	Flugasche	Rauchgas	Rostasche	Flugasche	Rauchgas	Rostasche	Flugasche	Rauchgas
	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
Al	83,4	16,6	0,0	91,4	8,6	0,0	96,8	3,2	0,0
As	12,2	86,0	1,9	9,3	89,6	1,1	9,8	68,4	1,8
Au	17,6	68,2	14,0	99,0	0,8	0,2	18,0	66,4	15,7
Ва	77,2	21,9	0,9	75,5	23,8	0,7	92,7	7,0	0,3
Cd	3,3	93 <i>,</i> 5	3,2	2,1	97,0	0,9	2,1	6,8	1,1
Со	58,9	22,6	18,6	75,9	21,7	2,4	80,3	15,9	3,8
Cr	42,5	37,4	20,1	54,4	38,3	7,3	50,3	43,9	5,8
Cu	93,9	5,6	0,5	90,4	8,8	0,8	79 <i>,</i> 8	18,9	1,3
Mn	83,4	14,7	1,9	85,2	14,5	0,3	95,6	4,1	0,3
Мо	26,0	54,4	19,6	33,4	62,6	4,0	57,3	36,8	5,9
Ni	83,1	3,4	13,6	72,9	15,5	11,5	87,6	4,4	8,1
Pb	2,1	97,1	0,9	3,0	96,8	0,2	0,7	96,2	1,1
Sb	11,0	87,9	1,1	4,4	95,3	0,3	10,4	89,3	0,4
Se	18,7	53,7	27,6	19,8	55,1	25,1	18,5	51,3	30,2
Sn	43,3	55 <i>,</i> 3	1,4	60,3	39,5	0,2	48,6	51,1	0,3
Те	23,0	66,1	10,9	30,8	61,4	7,8	24,2	67,6	8,0
V	72,4	14,9	12,7	78,3	10,5	11,2	83,2	6,8	10,0
Zn	17,3	81,5	1,2	2,0	97,7	0,4	4,7	94,2	1,1

Tabelle 5.3 Prozentuale Verteilung der Schwermetalle über die stofflichen Austräge, Warmstartbetrieb

63,5

0,5

64,1

35,2

36,0

1,5

60,8

37,7

Summe

Metall	Prozess 1		Prozess 1 Prozess 2					Prozess 3	
	Rostasche	Flugasche	Rauchgas	Rostasche	Flugasche	Rauchgas	Rostasche	Flugasche	Rauchgas
	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
Al	99,1	0,8	0,1	99,6	0,3	0,1	98,2	1,6	0,2
As	69,9	3,1	26,9	74,1	7,6	18,3	78,1	4,6	17,1
Au	98,4	0,3	1,3	77,2	3,6	19,0	93,2	1,1	5,7
Ba	96,0	3,7	0,2	99,3	0,6	0,1	98,0	1,9	0,1
Cd	52,4	42,5	5,1	29,9	57,8	12,3	32,0	56 <i>,</i> 3	11,7
Со	74,8	8,4	16,8	87,1	4,3	8,6	92,8	3,4	3,7
Cr	90,5	5,5	4,0	96,0	3,5	0,5	90,9	6,6	2,5
Cu	96,0	2,0	1,9	97,2	2,3	0,5	89,6	5,3	5,1
Mn	92,6	7,0	0,2	99,2	0,6	0,1	97,0	2,9	0,1
Мо	43,1	9,7	47,2	68,5	8,2	23,2	76,1	7,0	17,0
Ni	93,7	2,3	4,0	97,7	1,0	1,3	90,7	1,5	7,8
Pb	9,5	77,8	12,7	17,6	71,0	11,4	20,3	61,1	18,6
Sb	42,7	38,2	19,2	69,6	13,2	17,1	70,4	14,1	15,5
Se	63,1	8,5	28,4	77,0	4,0	19,0	78,5	4,3	17,2
Sn	66,7	22,0	11,3	83,3	14,8	1,9	71,3	19,8	8,9
Те	33,7	5,8	60,6	49,3	2,2	48,5	50,6	4,9	44,5
V	96,6	0,9	0,5	99,2	0,1	0,7	95,8	1,4	2,8
Zn	82,6	16,7	0,5	76,2	22,8	1,0	89,9	10,3	0,8
Summe	96.8	2.8	0.4	97.4	2.2	0.4	95.2	3.3	0.6

Tabelle 5.4Prozentuale Verteilung der Schwermetalle über die stofflichen Austräge,
Kaltstartbetrieb

0,7

Smit-Report

Aus Tabelle 5.3 und 5.4, sowie Abbildung 5.1 geht hervor, dass bei dem untersuchten Kaltstartbetrieb die Schwermetalle zum größten Teil in der Rostasche gefunden werden, wohingegen die Schwermetalle beim Warmstartbetrieb sowohl in der Rostasche als auch in der Flugasche vorhanden sind. Der Unterschied zwischen den beiden Ofentypen wird vermutlich durch die höhere Ofentemperatur während der Kremation im untersuchten Warmstartbetrieb verursacht. In diesem Ofen verdampfen die sogenannten flüchtigen Schwermetalle und flüchtige Metallverbindungen aus der Rostasche, um anschließend auf den Flugascheteilchen im Rauchgaskanal (niedrigere Temperatur) zu kondensieren. Als flüchtige Schwermetalle können As, Cd, Mo, Pb, Sb, Se, Sn und Te betrachtet werden.

Wenn man nach der Verteilung der Schwermetalle in den stofflichen Austrägen schaut, unter Einbeziehung der Analyseergebnisse der ungemahlenen Rostasche bei Prozess 2 von sowohl dem Kaltstartbetrieb als dem Warmstartbetrieb, ergibt sich, dass beim Warmstartbetrieb die Schwermetalle vor allem im Flugasche vorkommen. In Tabelle 5.5 werden beide wiedergegeben.

Der Schwermetallgehalt der Rostasche wird auch durch den Zerkleinerungsprozess in der Konchenmühle beeinflusst.

Bestandteil	Warms	tartbetrieb, Pi	rozess 2	Kaltsta	artbetrieb, Pro	ozess 2
	Rostasche [%]	Flugasche [%]	Rauchgas [%]	Rostasche [%]	Flugasche [%]	Rauchgas [%]
Al	66,1	33,9	0,0	98,9	0,8	0,2
As	4,7	94,1	1,2	74,1	7,6	18,3
Au	23,1	61,3	15,7	77,2	3,8	19,0
Ва	76,1	23,2	0,7	96,7	3,0	0,4
Cd	2,1	97,0	0,9	29,9	57,8	12,3
Со	42,7	51,5	5,7	84,4	5,2	10,4
Cr	16,4	70,1	13,4	89,0	9,5	1,5
Cu	17,5	75,7	6,8	93,7	5,1	1,2
Mn	53,5	45,5	1,0	96,0	3,6	0,4
Mo	7,1	87,3	5,6	68,5	8,2	23,3
Ni	22,4	44,6	33,1	89,0	4,7	6,3
Pb	0,5	99,3	0,2	17,6	71,0	11,4
Sb	4,4	95,3	0,3	69,6	13,2	17,1
Se	19,8	55,1	25,1	77,0	4,0	19,0
Sn	11,5	88,0	0,5	29,9	62,0	8,1
Те	30,8	61,4	7,8	49,3	2,2	48,5
V	76,9	11,2	11,9	96,6	0,4	3,0
Zn	2,6	97,0	0,4	54,5	43,6	1,9
Summe	10,8	88,5	0,7	92,6	6,4	1,1

Tabelle 5.5Prozentuale Verteilung der Schwermetalle über die stofflichen Austräge vorZerkleinerung in der Knochenmühle

Aus Tabelle 5.5 wird deutlich erkennbar, dass Schwermetalle beim Warmstartbetrieb vor allem in der Flugasche vorkommen und beim Kaltstartbetrieb vor allem in der Rostasche zu finden sind, jedenfalls bevor diese gemahlen wird.

Der Unterschied in der Verteilung ist, so wie bereits angemerkt, vermutlich der höheren Prozesstemperatur im Ofenraum beim Warmstartbetrieb zuzuschreiben.

Eine ausgeglichene Massenbilanz für die Schwermetalle inklusive des Zerkleinerungsprozesses zu ermitteln, war nicht möglich. Wenn man die Summe aller Schwermetalle betrachtet, scheint die

zurückgewonnene Menge, inklusive Einfluss der Knochenmühle, zwischen 161% und 350% zu variieren. In der nachfolgenden Tabelle 5.6 sind die zurückgewonnenen Mengen für die Summe der Schwermetalle angegeben.

	Warmstartbetrieb	Kaltstartbetrieb
Prozess 1	168%	350%
Prozess 2	161%	260%
Prozess 3	185%	247%

 Tabelle 5.6
 Zurückgewonnene Menge der Schwermetalle

In der nachfolgenden Tabelle 5.7 ist der Bereich der zurückgewonnenen Mengen für jedes Schwermetall beider Kremationsprozesse angegeben.

Bestandteil	Warmstartbetrieb zurückgewonnene Menge [%]	Kaltstartbetrieb zurückgewonnene Menge [%]
Al	17700 - 29600	2730 - 7460
As	88 - 116	137 - 191
Au	2470 - 42300	214 - 13500
Ва	4620 - 10700	727 - 2400
Cd	8 - 24	29 - 41
Со	218 - 838	199 - 330
Cr	458 - 1270	205 - 258
Cu	41 - 118	123 - 470
Mn	28 - 59	21 - 38
Мо	335 - 340	165 - 322
Ni	316 - 742	391 - 2030
Pb	15 - 18	91 - 168
Sb	30 - 33	48 - 64
Se		
Sn	208 - 1520	106 - 442
Те		
V	831 - 3280	160 - 226
Zn	55 - 109	141 - 206

Tabelle 5.7 Bereich der zurückgewonnen Mengen der Schwermetalle für beide Ofentypen

Aus Tabelle 5.7 wird deutlich, dass die Mengen Al, Au, Ba und Mn in den stofflichen Austrägen systematisch einige tausend Prozent höher sind als in den stofflichen Einträgen. Dies ist nur teilweise durch den Einfluss der Knochenmühle auf den Schwermetallgehalt zu erklären. Aus Tabelle 4.25 ergibt sich, dass die Knochenmühle vor allem zu der Erhöhung der Al, Ba, Mn, Sn und Ni Mengen in den stofflichen Austrägen beiträgt.

5.3 Quecksilber

In der nachfolgenden Tabelle 5.8 ist die prozentuale Verteilung von Quecksilber über die stofflichen Austräge für jeden untersuchten Prozess angegeben.

Smit-Report

	Warmstartbetrieb			Kaltstartbetrieb		
	Rostasche [%]	Flugasche [%]	Rauchgas [%]	Rostasche [%]	Flugasche [%]	Rauchgas [%]
Prozess 1	0,03	0,10	99,87	0,01	0,14	99,85
Prozess 2	0,04	0,09	99,87	0,01	0,06	99,93
Prozess 3	0,03	0,09	99,88	0,01	0,19	99,80

 Tabelle 5.8
 Prozentuale Verteilung des Quecksilbers über die stofflichen Austräge

Aus Tabelle 5.8 geht hervor, dass Quecksilber zu mehr als 99,8% in gasförmigem Zustand durch die Rauchgase ausgestoßen wird. In Tabelle 5.9 sind die zurückgewonnenen Mengen für Quecksilber angegeben.

	Warmstartbetrieb	Kaltstartbetrieb
Prozess 1	101%	113%
Prozess 2	86%	53%
Prozess 3	77%	99%

Tabelle 5.9 Zurückgewonnene Menge Quecksilber

Die zurückgewonnenen Mengen des Quecksilbers können, den Umständen entsprechend, gut ermittelt werden. Auch kann geschlussfolgert werden, dass die Anwesenheit von Quecksilber-Amalgam die wichtigste Quelle von Quecksilberemissionen beim Kremationsprozess ist. Diese Emission beträgt, ausgehend von 5 Quecksilberamalgamfüllungen pro Körper und bezogen auf 11% O_2 in den Rauchgasen, für Etagenöfen 2,0 bis 2,5 mg/m³ ind. und für Flachbettöfen 1,5 bis 2,0 mg/m³ ind. (Siehe auch Anhang A.1 bis einschließlich A.6)

Aus der Literatur [8] ist bekannt, dass Quecksilber eine sehr stabile Verbindung mit Selen eingehen kann, wobei Quecksilberselenid (ein bei hohen Temperaturen fester Stoff) entsteht. Die Anwesenheit von Selen könnte darum zu einer niedrigeren Zurückgewinnung des Quecksilbers führen. Zudem wurde die Erschließung und Analyse der Quecksilberkomponenten in den Rauchgasen und Rostaschen auf eine Weise ausgeführt, dass auch Quecksilber, das an Selen gebunden ist, analysiert werden konnte.

5.4 Phosphor

In der nachfolgenden Tabelle 5.10 ist die prozentuelle Verteilung des gesamten Phosphors über die stofflichen Austräge für jeden untersuchten Prozess angegeben. Der Phosphorgehalt wurde nur in der Rostasche und der Flugasche bestimmt, da angenommen werden kann, dass Phosphor nicht in gasförmigem Zustand im Rauchgaskanal vorkommen kann. Phosphor kommt vor allem als fester Stoff in Verbindung mit Calcium vor. Oxidiertes Phosphor (Phosphate) kommt vor allem in der Form

 $Ca_3(PO_4)$ vor, was bei der Schornsteintemperatur ein fester Stoff ist. Übrige Phosphate wurden als lösliches *Orthophosphat* (P_2O_5) bestimmt.³

	Warmstartbetrieb		Kaltstartbetrieb	
	Rostasche [%]	Flugasche [%]	Rostasche [%]	Flugasche [%]
Prozess 1	99,8	0,2	99,9	0,1
Prozess 2	99,8	0,2	99,9	0,04
Prozess 3	99,7	0,3	99,9	0,1

Tabelle 5.10 Prozentuale Verteilung des gesamten Phosphors über die stofflichen Austräge

Aus den Ergebnissen geht hervor, dass Phosphor nahezu vollständig über die Rostasche ausgestoßen wird. Wenn allerdings nach dem Ausstoß von Phosphaten anstelle von Phosphor geschaut wird, ergibt sich, dass Phosphate abhängig vom Ofentyp über die Rostasche oder den Flugasche ausgestoßen werden. Im Vergleich zum totalen Phosphorausstoß ist dieser Teil jedoch klein. Der Anteil von Phosphaten gegenüber der gesamten Menge Phosphor beträgt weniger als 0,1%. Die Ursache für diesen Unterschied in der Verteilung der Phosphate über die stofflichen Austräge zwischen den beiden Ofentypen ist wahrscheinlich durch die Unterschiede in der Prozessführung zu erklären. So wie in Kap. 5.1 angegeben, ist die durchschnittliche Ofentemperatur beim Warmstartbetrieb höher als beim Kaltstartbetrieb, was zur Folge hat, dass Phosphate aus der Rostasche verdampfen und anschließend im Rauchgaskanal auf der Flugasche kondensieren.

	Warmstartbetrieb		Kaltstartbetrieb	
	Rostasche [%]	Flugasche [%]	Rostasche [%]	Flugasche [%]
Prozess 1	1,9	98,1	94,7	5,3
Prozess 2	5,9	94,1	96,6	3,4
Prozess 3	1,9	98,1	99,2	0,8

Tabelle 5.11 Prozentuale Verteilung der Phosphate (als P₂O₅)

Die Massenbilanz für Phosphor scheint nicht in allen Fällen zu stimmen. In Tabelle 5.12 sind die zurückgewonnenen Mengen des Phosphors angegeben. Der Unterschied der zurückgewonnenen Mengen ist wahrscheinlich der Verbreitung des Phosphorgehalts im menschlichen Körper zuzuschreiben. Phosphor kommt vor allem in Muskelgewebe vor. Das Verhältnis zwischen Knochenund Muskelgewebe hat darum einen Einfluss auf den Phosphorgehalt des menschlichen Körpers.

	Warmstartbetrieb	Kaltstartbetrieb
Prozess 1	90%	56%
Prozess 2	65%	92%
Prozess 3	55%	102%

Tabelle 5.12	Zurückgewonnene	Mengen	Phosphor
TUDENE J.IZ	Zuruckyewonnene	wiengen	rnosphor

³ Hinweis: P₂O₅ ist die chemische Formel für Phosphorpentoxid, wurde aber im Original 'Orthophossphat' genannt und aus diesem Grund auch hier so übersetzt.

5.5 Stickstoff

	Warmstartbetrieb			Kaltstartbetrieb		
	Rostasche [%]	Flugasche [%]	Rauchgas [%]	Rostasche [%]	Flugasche [%]	Rauchgas [%]
Prozess 1	0,9	0,10	99,0	1,2	0,04	98,8
Prozess 2	3,0	0,03	96,9	3,1	0,03	96,9
Prozess 3	1,3	0,05	98,7	4,2	0,03	95,8

In der nachfolgenden Tabelle 5.13 ist die prozentuale Verteilung des Stickstoffs (exklusiv N₂) über die stofflichen Austräge für jeden untersuchten Prozess angegeben.

Tabelle 5.13 Prozentuale Verteilung des Stickstoffs über die stofflichen Aus	sträge
--	--------

Aus Tabelle 5.13 geht hervor, dass Stickstoff vor allem in gasförmigem Zustand über die Rauchgase ausgestoßen wird. Der Stickstoff in den Rauchgasen wird in der Form von Stickstoffoxiden und N₂ (in Tabelle 5.13 ist der Anteil des N₂ nicht mit einbezogen) ausgestoßen. In Tabelle 5.14 sind die zurückgewonnenen Mengen des Stickstoffs angegeben. Hieraus ergibt sich, dass die zurückgewonnen Mengen sehr niedrig sind, was sich dadurch erklärt, dass der Großteil des in den stofflichen Einträgen anwesenden Stickstoffs als N₂ ausgestoßen wird.

	Warmstartbetrieb	Kaltstartbetrieb
Prozess 1	3%	1%
Prozess 2	5%	1%
Prozess 3	5%	1%

Tabelle 5.14 Zurückgewonnene Mengen Stickstoff (exklusiv N₂)

5.6 Schwefel

In der nachfolgenden Abbildung 5.2 ist die prozentuale Verteilung der Schwefelemissionen über die stofflichen Austräge für jeden untersuchten Prozess angegeben.

Abbildung 5.2 Verteilung des Schwefels über die stofflichen Austräge

Schwefel wird vor allem über die Rauchgase in der Form von SO₂ ausgestoßen. Auffallend in der Verteilung des Schwefels ist, dass beim Kaltstartbetrieb der Anteil des Schwefels in der Ofen-/Rostasche höher ist als beim Warmstartbetrieb, und dass bei Letzterem Schwefel kaum in der Rostasche vorkommt. Dies wird wahrscheinlich durch die höhere Ofentemperatur beim Warmstartbetrieb verursacht. In Tabelle 5.15 sind die prozentualen Verteilungen angegeben.

	Warmstartbetrieb			Kaltstartbetrieb		
	Rostasche [%]	Flugasche [%]	Rauchgas [%]	Rostasche [%]	Flugasche [%]	Rauchgas [%]
Prozess 1	1,0	5,2	93,8	18,5	5,9	75,7
Prozess 2	0,7	7,2	92,1	12,5	1,7	85,8
Prozess 3	1,2	10,4	88,5	16,1	1,9	82,0

Tabelle 5.15 Prozentuale Verteilung des Schwefels über die stofflichen Austräge

Die berechneten zurückgewonnenen Mengen des Schwefels siehe nachfolgende Tebelle:

	Warmstartbetrieb	Kaltstartbetrieb
Prozess 1	83%	28%
Prozess 2	81%	53%
Prozess 3	51%	58%

Tabelle 5.16 Zurückgewonnene Mengen Schwefel.

Mindestens die Hälfte der geschätzten Menge Schwefel in den stofflichen Einträgen wird in den stofflichen Austrägen wiedergefunden. Der Restunterschied in der Massenbilanz ist wie bei den übrigen Bestandteilen wahrscheinlich auf die Ungenauigkeit der Schätzung der Zusammenstellung der stofflichen Einträge zurückzuführen.

5.7 Chlor

In der nachfolgenden Abbildung 5.3 ist die prozentuale Verteilung des gesamten Chlors über die stofflichen Austräge für alle untersuchten Prozesse dargestellt.

Abbildung 5.3 Verteilung des gesamten Chlors über die stofflichen Austräge

Aus der Abbildung geht hervor, dass mehr als die Hälfte des Chlors in beiden Prozessen als Rauchgase ausgestoßen werden. Außerdem kann beobachtet werden, dass beim Warmstartbetrieb der Anteil des Chlors minimal ist, was mit der höheren Durchschnittstemperatur erklärt werden kann (siehe Kap. 5.1). In der nachfolgenden Tabelle 5.17 ist die prozentuale Verteilung des Chlors über die verschiedenen stofflichen Austräge angegeben.

	Warmstartbetrieb			Kaltstartbetrieb		
	Rostasche [%]	Flugasche [%]	Rauchgas [%]	Rostasche [%]	Flugasche [%]	Rauchgas [%]
Prozess 1	2,4	44,0	53,7	13,9	26,7	59 <i>,</i> 3
Prozess 2	4,9	35,9	59,2	9,7	17,7	72,6
Prozess 3	2,6	37,1	60,3	22,5	7,7	69,7

Tabelle 5.17 Prozentuale Verteilung des Chlors über die stofflichen Austräge.

Aus den Analyseergebnissen ergibt sich außerdem, dass der Anteil des Chlors in der Flugasche zu 100% aus löslichen Chlorverbindungen (Chloriden) besteht. Der Chlorgehalt in den Rauchgasen wurde als Cl⁻ analysiert.

Aus der Massenbilanz ist ersichtlich, dass in den meisten Fällen weniger als die Hälfte der geschätzten Menge Chlor aus den stofflichen Einträgen in den stofflichen Austrägen wiedergefunden werden kann. Die Ursache hierfür ist wahrscheinlich, dass der wirkliche Prozentsatz des Chlors in den stofflichen Einträgen von den Literaturangaben abweicht. Die Möglichkeit, dass Chlor in der Form von Cl₂, Hypochlorite oder Chlorkohlenwasserstoffen ausgestoßen wird, wird als vernachlässigbar betrachtet.

In der nachfolgenden Tabelle 5.18 sind die zurückgewonnenen Mengen des Chlors für alle untersuchten Prozesse angegeben.

	Warmstartbetrieb	Kaltstartbetrieb
Prozess 1	81%	33%
Prozess 2	32%	32%
Prozess 3	42%	32%

Tabelle 5.18 Zurückgewonnene Menge Chlor.

5.8 Lösliches Fluor

In der nachfolgenden Abbildung 5.4 wird die prozentuale Verteilung des löslichen Fluors über die stofflichen Austräge dargestellt.

Abbildung 5.4 Verteilung des löslichen Fluors über die stofflichen Austräge

Aus der oben gezeigten Abbildung 5.4 geht hervor, dass lösliches Fluor zum größten Teil über die Rauchgase ausgestoßen wird. Der Anteil des löslichen Fluors in der Rostasche ist vor allem beim Warmstartbetrieb gleich Null. In der nachfolgenden Tabelle 5.19 ist die prozentuale Verteilung des löslichen Fluors angegeben.

		Warmstartbetri	eb	Kaltstartbetrieb				
	Rostasche [%]	Flugasche [%]	Rauchgas [%]	Rostasche [%]	Flugasche [%]	Rauchgas [%]		
Prozess 1	0,9	10,3	88,9	3,7	19,0	77,3		
Prozess 2	0,6	6,1	93,3	4,2	13,0	82,8		
Prozess 3	1,2	7,2	91,7	4,9	9,2	85,9		

Tabelle 5.19 Prozentuale Verteilung des löslichen Fluors über die stofflichen Austräge

Die Massenbilanz der Kremationsprozesse zeigt, dass nur ein kleiner Teil der geschätzten Menge des löslichen Fluors in den stofflichen Einträgen zurückgefunden werden kann. Eine mögliche Erklärung könnte sein, dass Fluor vor allem in der Rostasche in der Form von nicht-löslichem Fluor vorkommen kann, vor allem in der Form von Calciumfluorid (maximale Löslichkeit 0.016 Gramm CaF₂ pro Liter Wasser [7]). Des Weiteren spielt die Ungenauigkeit der Schätzung der Eingangszusammensetzung eine Rolle. In Tabelle 5.20 sind die zurückgewonnenen Mengen für lösliches Fluor angegeben.

	Warmstartbetrieb	Kaltstartbetrieb
Prozess 1	2%	1%
Prozess 2	2%	1%
Prozess 3	2%	1%

Tabelle 5.20 Zurückgewonnene Menge des löslichen Fluors

5.9 Rauchgasemissionen

In der nachfolgenden Tabelle 5.21 sind die CO, NO_x und C_xH_y -Durchschnittskonzentrationen in den Rauchgasen beider Ofentypen bei 11% O₂ in den Rauchgasen angegeben

		Warmstartbetrie	b	Kaltstartbetrieb				
	CO [mg/m ³ ind]	NOx [mg/m ³ ind]	CxHy [mg/m ³ ind]	CO [mg/m ³ ind]	NOx [mg/m ³ ind]	CxHy [mg/m ³ ind]		
Prozess 1	174	508	544	25	181	1		
Prozess 2	217	432	441	27	282	1		
Prozess 3	46	487	73	32	293	1		

Tabelle 5.21 Durchschnittliche Rauchgaskonzentrationen von CO, NO_x und C_xH_y; bezogen auf 11% O₂

Smit-Report

Aus den in Tabelle 5.21 angegebenen Ergebnissen geht hervor, dass die Emissionen von NO_x, CO und C_xH_y beim Warmstartbetrieb bedeutend höher sind als beim Kaltstartbetrieb.

Die hohe durchschnittliche CO-Konzentration beim Warmstartbetrieb wird vor allem durch punktuell höhere CO-Gehalte gegen Ende des Kremationsprozesses verursacht. Aus einer Analyse der Prozesstemperaturen sowie durch die Betriebsmessungen beim Warmstartbetrieb ergibt sich, dass die CO-Spitzen vor allem dann auftreten, wenn der Hauptbrenner und/oder der Nachbrenner ausgeschaltet sind, was gegen Ende des Kremationsprozesses regelmäßig der Fall ist. Dieses Ausschalten geschieht, wenn die Prozesstemperatur höher ist als die im Heizprogramm (siehe Anhang B.2) vorgegebenen Temperaturen. Möglicherweise wird die Erhöhung der CO-Konzentration in diesen Fällen durch eine schlechte Mischung der Rauchgase, kombiniert mit den punktuell niedrigen Temperaturen (< 850°C) und dann niedrigen O₂-Gehalten (< 6%) in den Rauchgasen verursacht. Zudem spielt eine große Rolle, dass die Nachbrenntemperatur vor allem in der letzten halben Stunde beim Warmstartbetrieb zu niedrig ist (< 850°C bis zu einem gemessenen Minimum von ca. 760°C), um eine vollständige Verbrennung der noch unverbrannten Komponenten zu gewährleisten.

Beim Kaltstartbetrieb ist der CO-Gehalt niedriger, weil der (modulierende) Nachbrenner zu allen Zeiten in Betrieb sowie die Nachbrenntemperatur höher ist.

Für die höhere C_xH_y-Konzentration beim Warmstartbetrieb gilt im Prinzip dieselbe Begründung wie für die höhere CO-Konzentration. Bezogen auf einen O₂-Gehalt von 11% in den Rauchgasen ist zu sehen, dass der C_xH_y-Gehalt der Rauchgase gegen Ende des Kremationsprozesses steigt. Für die höhere NO_x Emission beim Warmstartbetrieb kann zunächst keine eindeutige Erklärung gegeben werden. Möglicherweise spielt die höhere durchschnittliche Ofentemperatur beim Warmstartbetrieb hierbei eine Rolle. Eine weitere Studie zu den Ursachen der NO_x-Bildung bei Kremationsprozessen könnte hierüber mehr Aufschluss geben.

Der Verlauf der NO_x-Konzentration in der Zeit des untersuchten Warmstartbetriebes (siehe Anhang A.7 bis einschließlich A.9) zeigt, dass es überschlägig betrachtet zwei NO_x-Konzentrationsgipfel zu geben scheint. Der erste Gipfel wird durch die Entzündung des Körpers verursacht. Der zweite Gipfel wird vermutlich dadurch verursacht, dass in diesem Moment der Hauptbrenner eingeschaltet wird, wodurch die Verbrennung der Körperreste stark angefacht wird.

5.10 Vergleich mit anderen Studien

Um ein besseres Bild zur Repräsentativität der untersuchten Prozesse zu erlangen, sind in den nachfolgenden Tabellen 5.22 bis einschließlich 5.24 Messreihen von anderen in der Vergangenheit an vergleichbaren Ofentypen durchgeführten Studien aufgeführt. In Tabelle 5.22 und 5.23 sind die durchschnittlichen Ergebnisse der Rauchgasemissionsmessungen angegeben. Ergebnisse der Schwermetallemissionen sind nur von Kaltstartprozessen bekannt. In Tabelle 5.24 sind die Ergebnisse früherer Studien zu der Zusammenstellung der Rostasche wiedergegeben.

Bestandteil	Einheit	1	2	3	4	Vorl. Studie
Тур		Warmstart	Warmstart	Warmstart	Warmstart	Warmstart
Dauer	Min	72	81	123	89	68-74
Ertrag	m ³ /Prozes	2592	4393	3793	4747	2101-2674
	S					
Hg	m ³ /Prozes				3,3	1731-2300 ¹⁾
	S					
Cl-	m ³ /Prozes	41500			66400	20610-31154
	S					
F-	m ³ /Prozes	778				194-260
	S					
NOx	m ³ /Prozes	306000	606000	440000		311000-
	S					480000
SO ₂	m ³ /Prozes	109000	360000	152000		125000-
	S					278000
C _x H _y	m ³ /Prozes	5180	22000	11400	19000	53000-447000
	S					
CO	m ³ /Prozes	93300	198000	60700	161000	33000-128000
	S					
CO ₂	vol%	2,6		2,8	2,4	2,5-3,0
O ₂	vol%	17,7	18,8	17,2	17,9	16,8-17,4
Staub	mg/Prozes	90700	101000	91000		91000-107000
	S					

¹⁾ Ca. 5 g Quecksilber-Amalgam hinzugefügt.

Tab. 5.22 Durchschnittliche Ergebnisse von früheren Rauchgasemissionsmessungen an Warmstartöfen im Vergleich zu vorliegender Studie.

Es ist auffallend, dass die in dieser Studie festgestellten C_xH_y Emissionen vielfach höher sind als bei früheren Messungen an vergleichbaren Öfen. Des Weiteren sind in dieser Studie die Chlorid- und Fluoridemissionen niedriger als bei früheren Studien.

Bestandteil	Einheit	5	6	7	8	Vorl. Studie
Тур		Kaltstart	Kaltstart	Kaltstart	Kaltstart	Kaltstart
Dauer	min	142	83	129	143	127-150
Ertrag	m ³ /Prozess	1671	4019	1613	1916	1742-2241
As	mg/Prozess				7,3	3
Cd	mg/Prozess				3,6	2-4
Со	mg/Prozess				0,6	1-2
Cr	mg/Prozess				10	21-24
Cu	mg/Prozess				18	17-32
Hg	mg/Prozess				0,6	1523-3236 ¹⁾
Mn	mg/Prozess				12	15-68
Ni	mg/Prozess				2,1	4-14
Pb	mg/Prozess				113	43-61
Se	mg/Prozess				1,9	5-6
Sn	mg/Prozess				7,3	18-63
Те	mg/Prozess				3,6	16-21
V	mg/Prozess				7,3	4-14
Cl-	mg/Prozess		34200	66000	99642	30700-36500
F-	mg/Prozess		764			94-100
NOx	mg/Prozess	342000	394000			367000-488000
SO ₂	mg/Prozess	199000	253000			69500-152000
C _x H _y	mg/Prozess	6700	16100	9680		1710-2690
СО	mg/Prozess	120000	108000	56400		40100-49300
CO ₂	vol%	6,2	2,2	6,3		5,2-5,6
O ₂	vol%	12,0	17,7	11,7	11,1	12,0-12,7
Staub	mg/Prozess	57000	(145000)			22800-60500

¹⁾ Ca. 5 g Quecksilber-Amalgam hinzugefügt.

Tab. 5.23 Durchschnittliche Ergebnisse von früheren Rauchgasemissionsmessungen an Kaltstartöfen im Vergleich zu vorliegender Studie

Smit-Report

In der obenstehenden Tabelle 5.23 wurde Ofen Nummer 6 mit einer abweichenden Prozessführung betrieben, wobei der Zug durch das System erhöht wurde und analog zum Warmstartbetrieb Luft in die Rauchgase injiziert wurde. Durch den größeren Zug durch das System ist die Staubemission nicht repräsentativ für den in dieser Studie untersuchten Kaltstartbetrieb.

Im Allgemeinen entsprechen die in dieser Studie gemessenen Emissionen denen früherer Studien.

Die CO- und C_xH_y-Emissionen sind in dieser Studie niedriger als in früheren Studien. Die Sn- und Te-Emissionen sind höher als bei früheren Studien an Kaltstartöfen.

In der nachfolgenden Tabelle 5.24 sind die Ergebnisse aufgeführt von früheren Bestimmungen der Zusammensetzung der Rostasche von Kremationsprozessen. Von den Messungen 1 und 3 in Tabelle 5.24 ist nicht bekannt, aus welchem Ofentypen die Rostasche kommt. Ebenso ist nicht bekannt, welche Analysemethoden für die Messungen 1 und 3 benutzt wurden. Messung Nummer 2 stammt aus einer Mischprobe, die von einigen Dutzend Kremationsprozessen kommt.

Bestandteil	Einheit	1	2	3	Vorl. Studie	Vorl. Studie
Тур		?	Warmstart	?	Warmstartbetrieb	Kaltstartbetrieb
As	mg/kg	< 0,1			0,72 - 0,84	3 - 3,5
Ва	mg/kg		510		31 - 147	290 - 445
Cd	mg/kg	< 0,1			0,12	0,3 - 2,3
Cr	mg/kg	82	84	50 - 150	15 - 28	65 - 185
Cu	mg/kg	164	270	50 - 180	187 - 780	52 - 360
Hg	mg/kg	0,055		0,05 - 0,06	0,25 ¹⁾	0,05 - 0,21 ¹⁾
Ni	mg/kg	1,1	67	1,1 - 15	29 - 170	23.5 - 97
Pb	mg/kg	< 5			1,04 - 5,8	3
Zn	mg/kg	415	860	300-1950	46 - 250	375 - 1135
Cl	mg/kg		1700		448 - 582	1550 - 3350
S	mg/kg		6667		373 - 433	3150 - 4050
Р	mg/kg		150000		159000 - 162000	155000 -
						165000
P2O5	mg/kg	20000		20000-225000	7,5	7450 - 12000
Ν	mg/kg	3		4	490 - 990	590 - 1750

¹⁾ Ca. 5 g Quecksilber-Amalgam hinzugefügt.

Tabelle 5.24Ergebnisse der Bestimmungen der Zusammensetzung der Rostasche aus früherenStudien im Vergleich

Die in dieser Studie gemessenen Chrom-, Zink-, Schwefel- und Chlor-Gehälter der Warmstartbetrieb-Asche ist niedriger als früher bei diesem Ofentyp gemessen wurde. Der Stickstoffgehalt in der Rostasche ist in dieser Studie vielfach höher als bei früheren Messungen.

6. Fazit

Massebilanz

 Aus der Studie geht hervor, dass über die chemische Zusammensetzung vor allem von den Spurenelementen des Sargs und des Körpers viel Unklarheit besteht. Die für diese Studie verfügbare Literatur hierüber ist diesbezüglich völlig unzureichend. Die Unklarheit zeigt sich in der Massenbilanz und den daraus berechneten zurückgewonnenen Mengen, die zwischen 1% und einigen tausend Prozenten variieren. Es ist zu empfehlen, eventuell bei einer zukünftig vergleichbaren Studie eine umfassendere Analyse zu der Zusammenstellung der Eingangsströme durchführen zu lassen.

Einfluss der Knochenmühle

- Das Zermahlen der Rostasche in der Knochenmühle kann zu einer Erhöhung der Schwermetallgehälter in der Rostasche und damit zu einer Erhöhung der zurückgewonnenen Mengen in der Massenbilanz führen. Es wird deutlich, dass in den untersuchten Rostaschen die Konzentration der Schwermetalle als Folge des Zerkleinerungsprozesses zwischen 200 und 365% zunimmt, abhängig von der benutzten Zerkleinerungstechnik. Diese Zunahme ist vor allem der Erhöhung des Al-, Mn-, Sn- und Ni-Gehalts bei beiden Ofentypen zuzuschreiben. Zudem wurde beim Kaltstartbetrieb eine Zunahme des Vanadium- und Chromgehalts beobachtet.
- Nach dem Zerkleinerungsprozess ist der Gehalt an Schwermetallen in der Rostasche im Warmstartbetrieb doppelt so hoch wie im Kaltstartbetrieb. Die Ursache liegt möglicherweise in dem längeren Mahlvorgang beim Warmstartbetrieb und der Tatsache, dass die Ascheschublade in die Zerkleinerungsmaschine gelegt wird.

Zusammenstellung der Rostasche

 Aus der Studie geht hervor, dass die Rostasche beim Warmstartbetrieb, verglichen mit der Rostasche des Kaltstartbetriebs, eine niedrigere Menge an Schwermetallen, Phosphor, Schwefel, Chlor und löslichem Fluor enthält. Dahingegen ist beim Warmstartbetrieb die Menge der genannten Komponenten in der Flugasche höher als beim Kaltstartbetrieb. Dieser Unterschied in der Zusammensetzung der Rostasche und des Flugasches wird dadurch verursacht, dass die durchschnittliche Ofentemperatur des Warmstartbetriebs höher ist als beim Kaltstartbetrieb.

Quecksilber

Quecksilber wird vollständig (> 99,8%) in gasförmigem Zustand über die Rauchgase ausgestoßen. Die Menge Quecksilber, die ausgestoßen wird, war bei allen untersuchten Kremationsprozessen nahezu ebenso viel, wie dem Körper als Quecksilberamalgam hinzugefügt wurde. Daraus ergibt sich, dass die Anwesenheit von Quecksilber-Amalgam die wichtigste Quelle von Quecksilberemissionen bei Kremationsprozessen ist.

Phosphor

Phosphor ist vollständig (> 99%) an die Rostasche gebunden. Circa 0,1% der totalen Menge

des Phosphors wird in der Form von Phosphates (P_2O_5) über die Rauchgase oder den Flugasche ausgestoßen.

Stickstoff

Stickstoff wird vor allem als N₂ und NO_x über die Rauchgase ausgestoßen. Weniger als 5% der Gesamtmenge des Stickstoffs ist als N-Kjeldahl an die Rostasche gebunden.

Schwefel

Schwefel wird vor allem (75% - 94%) über die Rauchgase als SO₂ ausgestoßen. Der Anteil des Schwefels, der an die Rostasche gebunden ist, ist beim Kaltstartbetrieb höher als beim Warmstart. Dies wird wahrscheinlich durch die hohe Kremationstemperatur des Warmstartbetriebs verursacht.

Chlor

Chlor wird vor allem (78% - 98%) in der Form anorganischer löslicher Chloride über die Rauchgase und gebunden an den Flugasche ausgestoßen. Der Anteil des Chlors in der Rostasche ist bei Etagenöfen niedriger als bei Flachbettöfen. Dies wird ebenfalls wahrscheinlich durch eine höhere Kremationstemperatur des Warmstartbetriebs verursacht.

Lösliches Fluor

7 - 18% des löslichen Fluors (Fluoride) ist an der Flugasche gebunden und wird zu 77 bis 93% in gasförmigem Zustand über die Rauchgase ausgestoßen.

Rauchgasemissionen

Die durchschnittliche CO, C_xH_y und NO_x Emissionen über die Rauchgase sind beim Warmstartbetrieb höher als beim Kaltstart. Der Unterschied entsteht vor allem am Ende des Kremationsprozesses, wobei die modulierenden Brenner im Warmstartbetrieb abwechselnd auf Volllast oder Teillast laufen oder abgeschaltet sind. Hierdurch kann es vorkommen, dass in den Momenten, wenn die Brenner ausgeschaltet sind oder auf niedrigem Stand laufen, die Mischung der Rauchgase unzureichend ist, was erhöhte CO und C_xH_y Emissionen zur Folge hat. Beim Kaltstartbetrieb sind die modulierenden Brenner am Ende des Kremationsprozesses dauerhaft eingeschaltet.

Die Nachbrenntemperatur variierte beim Kaltstartbetrieb im Allgemeinen zwischen 800°C und 850°C. Beim Kaltstartbetrieb war festzustellen, dass die Nachbrenntemperatur während etwa der Hälfte bis zu zwei Drittel der Prozesszeit niedriger als 850°C ist. Innerhalb dieser Phasen war die Nachbrenntemperatur sogar während längerer Zeit niedriger als 800°C.

Als Folge der Nachbrenntemperaturen, die niedriger als 850°C sind, kann die vollständige Verbrennung von unverbrannten Bestandteilen (CO, C_xH_y) nicht gewährleistet werden. Vor allem beim Warmstartbetrieb führt dies zu höheren CO und C_xH_y Konzentrationen in den Rauchgasen.

7. Literatur

- [1] H.A. Schröder; The biological trace elements; J. chron. Dis. 1965, vol. 18, pp 217-228.
- [2] VDI 3891; Emissionsminderung Einäscherungsanlagen; 1992.
- [3] Physical properties of natural gases; N.V. Nederlandse Gasunie; 1980.
- [4] P. Engels, S. van Loo; Milieu-effecten van de energieginning uit (afval)hout; TNO rapport nr. 94-372; april 1995.
- [5] E. Smit; Onderzoek naar de rookgasemissies van Crematorium "Den en Rust" te Bilthoven;
 TNO rapport nr. 95-232; juli 1005
- [6] A.H.B. Schuurs, C.L. Davidson; Amalgaam, II Kwikbronnen; Ned. Tijdschr. Tandheelkunde 100, (1993) januari, pp 7-9.
- [7] CRC Handbookof Chemistry and Physica; CRC Press inc.; 60th edition; 1979-1980.
- [8] William K.H. Hogland; Usefulness of selenium fort he reduchtion of mercury emissions from crematoria; J. Environ. Qual 23; 1364 1366; (1994).
- [9] J.G. de Moolenaar; Effecten van verstrooien van crematie-as; Instituut voor Bos- en Natuuronderzoek (IBN-DLO), IBN-rapport 095; ISSN: 0928-6888; 1994.

8. Verantwortliche Institutionen und Verfasser

Name und Adresse des Auftraggebers Ministerium für Wohnungswesen, Raumordnung und Umweltfragen Generaldirektion Umweltschutz Direktion Luft und Energie, Abteilung für Gewerbe bzgl. Ing. H.W. Holtring Postfach 30945 2500 GX 's-Gravenhage

Namen und Funktionen der Projektmitarbeiter

Ing. E.R. Smit	Forschungsmitarbeiter/Studienleiter
E. Kuiper	Forschungsmitarbeiter
F.C. Poot	Qualitätsmanagement
J. Timmer	Forschungsmitarbeiter
A.E.A. van Velde	Forschungsmitarbeiter

Namen der Einrichtungen an die ein Teil der Untersuchungen in Auftrag gegeben wurde Analytische Chemie, TNO-MW, Delft Analytische Chemie, TNO-MW, Apeldoorn Labor BCO, Breda

Datum bzw. Zeitrahmen in dem die Studie erstellt wurde Krematorium Den en Rust: 17. und 18. Mai 1995 Krematorium Heeze: 11. und 12. Juli 1995

Unterschrift

ME

Ing. E.R. Smit Studienleiter

Genehmigt durch

Ir. J. de Koning Abteilungsleiter

Anhang A Messergebnisse der stofflichen Austräge

- A.1 Messergebnisse Kaltstartbetrieb, Prozess 1
- A.2 Messergebnisse Kaltstartbetrieb, Prozess 2
- A.3 Messergebnisse Kaltstartbetrieb, Prozess 3
- A.4 Messergebnisse Warmstartbetrieb, Prozess 1
- A.5 Messergebnisse Warmstartbetrieb, Prozess 2
- A.6 Messergebnisse Warmstartbetrieb, Prozess 3
- A.7 Darstellung kontinuierlicher Messungen: Warmstartbetrieb, Prozess 1
- A.8 Darstellung kontinuierlicher Messungen: Warmstartbetrieb, Prozess 2
- A.9 Darstellung kontinuierlicher Messungen: Warmstartbetrieb, Prozess 3
- A.10 Darstellung kontinuierlicher Messungen: Kaltstartbetrieb, Prozess 1
- A.11 Darstellung kontinuierlicher Messungen: Kaltstartbetrieb, Prozess 2
- A.12 Darstellung kontinuierlicher Messungen: Kaltstartbetrieb, Prozess 3
- A.13 Prozentuale Verteilung der Bestandteile über die stofflichen Austräge beim Kalt- und Warmstartbetrieb
- A.14 Bereich der zurückgewonnenen Mengen für Kalt- und Warmstartbetrieb

A.1 Messergebnisse Kaltstartbetrieb, Prozess 1

Bestandteil	An Flugstaub gebunden [mg]	An Flugstaub gebunden [mg/kg]	Gasbildur [mg]	ng	Ofenasche [mg/kg]	An Flugstaub gebunden [mg/m ³ ind]	Gasbildung [mg/m ³ ind]	Gesamt in Rauchgas [mg/m ³ ind]	Total in Rauchgas [mg/m ³ ind] bei 11% O ₂	Pro Prozess im Rauchgas [mg]	Gesamt pro Prozess [mg]
AI	0,22	3467	0,027		12000	0,0949	0,0117	0,1066	0,1185	239	26063
As	0,00035	6	0,003		3,5	0,0002	0,0013	0,0014	0,0016	3	11
Au	0,001	16	0,005		170	0,0004	0,0022	0,0026	0,0029	6	372
Ba	0,025	396	0,0016		290	0,0108	0,0007	0,0115	0,0128	26	650
Cd	0,00415	66	0,0005		2,3	0,0018	0,0002	0,0020	0,0022	4	9
Co	0,0005	8	0,001		2	0,0002	0,0004	0,0006	0,0007	1	6
Cr	0,0125	198	0,00915		92,5	0,0054	0,0039	0,0093	0,0104	21	220
Cu	0,017	269	0,016		360	0,0073	0,0069	0,0142	0,0158	32	807
Mn	0,0685	1086	0,00185		410	0,0296	0,0008	0,0304	0,0337	68	950
Mo	0,0015	24	0,0073		з	0,0006	0,0031	0,0038	0,0042	9	15
Ni	0,0054	86	0,00915		97	0,0023	0,0039	0,0063	0,0070	14	223
Pb	0,0545	864	0,0089		3	0,0235	0,0038	0.0274	0,0304	61	68
Sb	0,00995	158	0,005		5	0,0043	0,0022	0,0065	0,0072	14	25
Se	0,0015	24	0,005		5	0,0006	0,0022	0,0028	0,0031	6	17
Sn	0.01245	197	0,0064		17	0,0054	0,0028	0,0081	0,0090	18	55
Te	0.0019	30	0,02		5	0,0008	0,0086	0,0094	0,0105	21	32
V	0,00925	147	0,005	16	460	0,0040	0,0022	0,0061	0,0068	14	1004
Zn	0.51	8082	0,0145		1135	0,2201	0,0063	0,2263	0,2516	507	2950
Ha	0,0048	76	0,975		0,21	0,0021	1,4417	1,4438	1,6051	3236	3236
CI	14.3	226624			3350	6.17		6,17	6,86	13828	21037
S	2,75	43582			3900	1,19		1,19	1,32	2659	11052
P	0,495	7845			155000	0,21		0,21	0,24	479	334039
P.O.	1.5	23772			12000	0.65		0,65	0,72	1450	27274
opl. F	0.0255	404			2.25	0.01		0,01	0.01	25	30
opl. Cl	14.3	226624			4150	6,17		6,17	6,86	13828	22759
N	0.05	792			590	0,02		0,02	0,02	48	1318
CF			11				13.70	13,70	15,23	30699	30699
F			0,036				0,045	0,045	0,050	100	100

A.2 Messergebnisse Kaltstartbetrieb, Prozess 2

Bestandteil	An Flugstaub gebunden [mg]	An Flugstaub gebunden [mg/kg]	Gasbildung [mg]	Ofenasche [mg/kg]	An Flugstaub gebunden [mg/m ³ ind]	Gasbildung [mg/m ³ ind]	Gesamt in Rauchgas [mg/m ³ ind]	Total in Rauchgas [mg/m ³ ind] bei 11% O ₂	Pro Prozess im Rauchgas [mg]	Gesamt pro Prozess [mg]
AI	0,069	1860	0,021	5750	0,0307	0,0093	0,0401	0,0461	70	18177
As	0,00125	34	E00,0	з	0,0006	0,0013	0,0019	0,0022	3	13
Au	0,001	27	0,005	5	0,0004	0,0022	0,0027	0,0031	5	20
Ba	0,011	296	0,0013	445	0,0049	0,0006	0,0055	0,0063	10	1411
Cd	0,00235	63	0,0005	0,3	0,0010	0,0002	0,0013	0,0015	2	3
Co	0,0005	13	0,001	2,5	0,0002	0,0004	0,0007	0,0008	1	9
Cr	0,027	728	0,00415	185	0,0120	0,0018	0,0139	0,0160	24	607
Cu	0,0175	472	0,00415	185	0,0078	0,0018	0,0096	0.0111	17	599
Mn	0,0175	472	0,00195	560	0,0078	0,0009	0,0087	0,0100	15	1779
Mo	0,00145	39	0,00415	з	0,0006	0,0018	0,0025	0,0029	4	14
Ni	0,00227	61	0,003	56	0,0010	0,0013	0,0023	0,0027	4	180
Pb	0,049	1321	0.00785	3	0,0218	0,0035	0,0253	0,0291	44	54
Sb	0,00385	104	0,005	5	0,0017	0,0022	0,0039	0,0045	7	23
Se	0,001055	28	0,005	5	0,0005	0,0022	0,0027	0,0031	5	20
Sn	0,0715	1927	0,00935	99	0,0318	0,0042	0,0360	0.0414	63	374
Тө	0,0009	24	0,02	5	0,0004	0,0089	0,0093	0,0107	16	32
v	0,00063	17	0,005	170	0,0003	0,0022	0,0025	0,0029	4	540
Zn	0,455	12264	0,02	375	0,2026	0,0089	0,2115	0,2433	368	1549
Hg	0.00125	34	0,54	0,05	0,0005	0,8737	0,8743	1,0056	1523	1523
CI	11,45	308625		1550	5,10		5,10	5,86	8879	13759
S	1,75	47170		3150	0,78		0,78	0,90	1357	11276
P	0,245	6604		165000	0,11		0,11	0,13	190	519775
P ₂ O ₅	1,05	28302		7450	0.47		0.47	0,54	814	24274
opl, F	0,019	512		1,5	0,01		0,01	0.01	15	19
opl. CI	11,45	308625		430	5,10		5,10	5,86	8879	10233
N	0,05	1348		1350	0,02		0,02	0.03	39	4290
Cr			14			20,93	20,93	24,08	36463	36463
P			0,036			0.054	0,054	0,062	94	94

A.3 Messergebnisse Kaltstartbetrieb, Prozess 3

estandteil	An Flugstaub gebunden [mg]	An Flugstaub gebunden [mg/kg]	Gasbildung [mg]	Ofenasche [mg/kg]	An Flugstaub gebunden [mg/m ³ ind]	Gasbildung [mg/m ³ ind]	Gesamt in Rauchgas [mg/m ³ ind]	Total in Rauchgas [mg/m ³ ind] bei 11% O ₂	Pro Prozess im Rauchgas [mg]	Gesamt pro Prozess [mg]
Al	0,305	10339	0,029	4100	0,1281	0,0122	0,1403	0,1692	267	15166
As	0,00084	28	0,003	3	0,0004	0,0013	0,0016	0,0019	3	14
Au	0,001	34	0,005	18	0,0004	0,0021	0,0025	0,0030	5	70
Ba	0,0365	1237	0,00165	410	0,0153	0,0007	0,0160	0,0193	30	1520
Cd	0,0024	81	0,0005	0,3	0,0010	0,0002	0,0012	0,0015	2	3
Co	0,00093	32	0,001	5,5	0,0004	0,0004	0,0008	0,0010	2	22
Cr	0.0215	729	0,00805	65	0,0090	0,0034	0,0124	0,0150	24	260
Cu	0.014	475	0.0135	52	0,0059	0.0057	0,0116	0,0139	22	211
Mn	0.073	2475	0,00355	535	0,0307	0,0015	0,0322	0.0388	61	2005
Mo	0.00125	42	0.00305	3	0,0005	0,0013	0,0018	0.0022	3	14
Ni	0.0018	61	0.0092	23,5	0.0008	0.0039	0,0046	0,0056	9	94
Pb	0.041	1390	0.0125	3	0.0172	0.0053	0.0225	0.0271	43	54
Sb	0.00455	154	0.005	5	0,0019	0,0021	0,0040	0,0048	8	26
Se	0,00125	42	0.005	5	0,0005	0,0021	0,0026	0,0032	5	23
Sn	0.0165	559	0.00735	13	0,0069	0.0031	0,0100	0,0121	19	66
Te	0,00219	74	0.02	5	0.0009	0.COB4	0,0093	0.0112	18	36
V	0,00255	86	0,005	37,5	0,0011	0,0021	0,0032	0,0038	6	142
Zn	0,41	13898	0.032	775	0,1722	0,0134	0,1857	0,2239	353	3169
Ha	0.00675	229	1	0,05	0,0028	1,4807	1,4836	1,7893	2820	2820
CI	4,85	164407		3100	2.04		2,04	2.46	3872	15138
S	2.2	74576		4050	0,92		0,92	1,11	1756	16474
P	0.52	17627		160000	0.22	**	0,22	0.26	415	581855
P.O.	0,675	22881		18000	0,28		0,28	0,34	539	65951
opl. F	0,013	441		1,5	0.01		0,01	0.01	10	16
opl, Cl	4,85	164407		1100	2,04		2,04	2,46	3872	7870
N	0,05	1695		1750	0,02		0,02	0,03	40	6399
CI			13			18.35	18,35	22,13	34878	34878
P			0,036			0,051	0,051	0,061	97	97

A.4 Messergebnisse Warmstartbetrieb, Prozess 1

Bestandteil	An Flugstaub gebunden [mg]	An Flugstaub gebunden [mg/kg]	Gasbildung [mg]	Ofenasche [mg/kg]	An Flugstaub gebunden [mg/m ³ ind]	Gasbildung [mg/m ³ ind]	Gesamt in Rauchgas [mg/m ³ ind]	Total in Rauchgas [mg/m ³ ind] bei 11% O ₂	Pro Prozess im Rauchgas [mg]	Gesamt pro Prozess [mg]
Al	0,84	6052	5.10-5	1210	0,2212	0,00003	0,2212	0,6278	591	3993
As	0,0187	135	0,0002	0,76	0,0049	0,0001	0,0050	0,0143	13	16
Au	0,002	14	0,0002	0,15	0,0005	0,0001	0,0006	0,0018	2	2
Ba	0,066	476	0,0013	67	0,0174	0,0007	0,0181	0,0514	48	237
Cd	0,012	86	0,0002	0,12	0,0032	0,0001	0,0033	0,0093	9	9
Co	0,002	14	0,0008	1,5	0,0005	0,0005	0,0010	0,0028	з	7
Gr	0.046	331	0.012	15	0.0121	0,0069	0,0190	0.0540	51	93
Cu	0,161	1160	0,0067	780	0,0424	0,0039	0,0463	0,1313	124	2316
Mn	0,135	973	0,0086	220	0,0355	0,0049	0,0405	0,1149	108	727
Mo	0,008	58	0,0014	1,1	0,0021	0,0008	0,0029	0,0083	8	11
NI	0.024	173	0.047	170	0,0063	0,0271	0,0334	0,0947	89	567
Pb	0,42	3026	0,0018	2,6	0,1106	0,0010	0,1116	0,3168	298	306
Sb	0,036	259	0,00022	1,3	0,0095	0,0001	0,0096	0,0273	26	29
Se	0,001	7	0,00025	0,1	0,0003	0,0001	0,0004	0,0012	1	1
Sn	0,016	115	0,0002	3,6	0,0042	0,0001	0,0043	0,0123	12	22
Тө	0,002	14	0,00016	0,2	0,0005	0,0001	0,0006	0,0018	2	2
V	0,006	43	0,0025	8,4	0,0016	0,0014	0,0030	0,0086	8	32
Zn	4,1	29539	0,03	250	1,0796	0,0173	1,0969	3,1129	2933	3635
Hg	0.003	22	0,275	0,25	0,0008	0,8595	0,8603	2,4414	2300	2301
CI	34,1	245677	÷-	523	8,98		8,98	25,48	24006	25476
S	6,7	48271		373	1,76		1,76	5,01	4717	5765
P	1,3	9366		159000	0,34		0,34	0,97	915	447864
P ₂ O ₅	1.35	9692		7,5	0,35		0,35	1.01	947	968
opl. F	0,031	223		0,76	0.01		0,01	0,02	22	24
opl, CI	34,1	245677		- 99	8,98		8,98	25,48	24006	24284
N	0,18	1297		490	0,05		0,05	0,13	127	1504
Ci-			3,88	-,-		11,65	11,65	33,07	31154	31154
P			0,025			0,075	0,075	0,213	201	201

A.5 Messergebnisse Warmstartbetrieb, Prozess 2

Bestandteil	An Flugstaub gebunden [mg]	An Flugstaub gebunden [mg/kg]	Gasbildung [mg]	Ofenasche [mg/kg]	An Flugstaub gebunden [mg/m ³ ind]	Gasbildung [mg/m ³ ind]	Gesamt in Rauchgas [mg/m ³ ind]	Total in Rauchgas [mg/m ³ ind] bei 11% O ₂	Pro Prozess im Rauchgas [mg]	Gesamt pro Prozess [mg]
Al	0,422	2264	2.10-5	890	0,1252	0,00001	0,1253	0,3034	263	3096
As	0,0408	221	0,0002	0,84	0,0121	0.0001	0.0123	0,0297	26	28
Au	0,002	11	0,0002	48	0,0006	0,0001	0,0007	0,0018	2	154
Ba	0,049	265	0,0006	31	0,0145	0,0004	0,0150	0,0363	31	130
Cd	0,028	152	0,0001	0,12	0,0083	0,0001	0,0084	0,0203	18	18
Co	0,0023	12	0,0001	1,6	0,0007	0.0001	0.0008	0,0018	2	7
Cr	0,06	325	0,0045	17	0,0178	0,0032	0,0210	0,0509	44	98
Cu	0,091	492	0,0032	187	0,0270	0,0023	0,0293	0,0709	62	657
Mn	0,205	1109	0,0018	240	0,0608	0,0013	0,0621	0,1505	131	894
Mo	0,016	87	0,0004	1.7	0.0047	0,0003	0,0050	0,0122	11	16
Ni	0,031	168	0,009	29	0,0092	0,0064	0,0156	0,0378	33	125
Pb	0,94	5087	0,0006	5,8	0,2790	0,0004	0,2794	0,6768	587	605
Sb	0,094	509	0,0001	0,87	0,0279	0,0001	0,0280	0,0678	59	62
Se	0,0014	8	0,00025	0,1	0.0004	0.0002	0,0006	0,0014	1	2
Sn	0,092	498	0,0002	28	0,0273	0,0001	0,0274	0,0665	58	147
Te	0,002	11	0,0001	0,2	0,0006	0,0001	0,0007	0,0016	1	2
V	0,006	32	0,0025	6. B,9	0,0018	0,0018	0,0036	0,0086	7	36
Zn	11.5	62229	0,017	46	3,4130	0.0121	3,4251	8,2972	7196	7342
Hg	0,003	16	0,302	0,25	0,0009	0,9346	0,9355	2,2661	1965	1966
CI	21,4	115801		582	6,35		6,35	15,39	13343	15195
S	18,3	99026		357	5,43		5,43	13,16	11410	12546
P	1.7	9199		162000	0,50		0,50	1,22	1060	516706
P ₂ O ₅	0,60	3235		7,5	0,18		0,18	0,43	373	397
opl. F	0,029	157		0,55	0,01		0,01	0,02	18	20
opl. Ci	21.4	115801		84	6,35		6,35	15,39	13343	13610
N	0,057	308		990	0,02		0.02	0,04	36	3187
CF			3,09			9,8184	9,82	23,7847	20627	20627
P	••		0,039			0,124	0,124	0,300	260	260

A.6 Messergebnisse Warmstartbetrieb, Prozess 3

Bestandteil	An Flugstaub gebunden [mg]	An Flugstaub gebunden [mg/kg]	Gasbildung [mg]	Ofenasche [mg/kg]	An Flugstaub gebunden [mg/m ³ ind]	Gasbildung [mg/m ³ ind]	Gesamt in Rauchgas [mg/m ³ ind]	Total in Rauchgas [mg/m ³ ind] bei 11% O ₂	Pro Prozess im Rauchgas [mg]	Gesamt pro Prozess [mg]
Al	0,354	2113	2.10-5	3000	0,0948	0,00001	0,0948	0,2895	211	6634
As	0,0234	140	0,0002	0,72	0.0063	0,0001	0,0064	0.0195	14	16
Au	0,002	12	0,0002	0,15	0,0005	0,0001	0,0007	0,0020	1	2
Ba	0,04	239	0,0008	147	0,0107	0,0005	0,0112	0,0341	25	340
Cd	0,02	119	0,0001	0,12	0,0054	0,0001	0,0054	0,0165	12	12
Co	0,002	12	0,0002	2,8	0,0005	0,0001	0,0007	0,0020	1	7
Cr	0,088	525	0,0049	28	0,0236	0,0028	0,0264	0,0805	59	119
Cu	0,214	1278	0,006	250	0,0573	0,0034	0,0607	0,1855	135	670
Mn	0,089	531	0,0029	580	0,0238	0,0017	0,0255	0,0779	57	1298
Mo	0,0044	26	0,0003	1,9	0,0012	0,0002	0,0014	0,0041	3	7
Ni	0,018	107	0.0141	100	0,0048	0.0081	0,0129	0,0394	29	243
Pb	0,507	3027	0.0024	1,04	0.1358	0.0014	0,1371	0,4188	305	307
Sb	0,059	352	0,0001	1.9	0,0158	0,0001	0,0159	0,0484	35	39
Se	0,001	6	0,00025	0,1	0,0003	0,0001	0,0004	0,0013	1	1
Sn	0,072	430	0,0002	19	0.0193	0,0001	0,0194	0,0592	43	84
Те	0,002	12	0.0001	0.2	0.0005	0.0001	0.0006	0.0018	1	2
v	0,004	24	0,0025	13,6	0,0011	0,0014	0,0025	0,0076	6	35
Zn	6,9	41194	0,035	96	1,8475	0,0201	1,8676	5,7039	4151	4356
Hg	0,003	18	0,265	0,25	0,0008	0,7779	0,7787	2,3784	1731	1731
CI	23,5	140299		448	6,29		6,29	19,22	13985	14944
S	13,7	81791		433	3,67		3,67	11,20	8153	9080
P	2	11940		159000	0,54		0,54	1,64	1190	341609
P.O.	1,40	8121		7,5	0,36		0,36	1,11	809	825
opl. F	0,028	167		1,26	0,01		0,01	0,02	17	19
opl. Cl	23,5	140299		50	6,29		6,29	19,22	13985	14092
N	0,092	549		730	0,02		0,02	0,08	55	1618
CI			3,19			9,27	9,27	28,32	20610	20610
P			0,03			0,087	0,087	0,266	194	194

A.7 Darstellung kontinuierlicher Messungen: Warmstartbetrieb, Prozess 1

A.8 Darstellung kontinuierlicher Messungen: Warmstartbetrieb, Prozess 2

A.9 Darstellung kontinuierlicher Messungen: Warmstartbetrieb, Prozess 3

A.10 Darstellung kontinuierlicher Messungen: Kaltstartbetrieb, Prozess 1

A.11 Darstellung kontinuierlicher Messungen: Kaltstartbetrieb, Prozess 2

A.12 Darstellung kontinuierlicher Messungen: Kaltstartbetrieb, Prozess 3

A.13 Prozentuale Verteilung der Bestandteile über die stofflichen Austräge beim Warm- und Warmstartbetrieb

300	Bestandteil	Ofenasche [%]	Flugstaub [%]	Rauchgas [%]
	AI	83,4 - 96,8	3,2 - 16,6	0,0 - 0,0
	As	9,3 - 12,2	86,0 - 89,6	1.1 - 1.9
	Au	17,8 - 99,0	0,8 - 68,2	0,2 - 15,7
	Ba	75,5 - 92,7	7,0 - 23,8	0,3 - 0,9
	Cd	2,1 - 3,3	93,5 - 97,0	0,9 - 3,2
	Co	58,9 - 80,3	15,9 - 22,6	2.4 - 18.6
	Cr	42,5 - 54,4	37,4 - 43,9	5,3 - 20,1
	Cu	79,8 - 93,4	5,6 - 18,9	0,5 - 1,3
	Mn -	83,4 - 95,6	4,1 - 14,7	0,3 - 1,9
	Mo	26,0 - 57,3	36,8 - 62,6	4,0 - 19,6
	Ni	72,9 - 87,6	3,4 - 15,5	8,1 - 13,6
	Pb	0,7 - 3,0	96.8 - 98.2	0.2 - 1.1
	Sb	4,4 - 11,0	87,9 - 95,3	0,3 - 1,1
	Se	18,5 - 19,8	51,3 - 55,1	25,1 - 30,2
	Sn	43,3 - 60,3	39,5 - 55,3	0,2 - 1,4
	Те	23,0 - 30,8	61,4 - 67,6	7,8 - 10,9
	v	72,4 - 83,2	6,8 - 14,9	10.0 - 12.7
	Zn	2,0 - 17,3	81,5 - 97,7	0,4 - 1,2
	Hg	0,03 - 0,04	0,09 - 0,10	99,87 - 99,88
	P	99,6 - 99,8	0,21 - 0,35	
	P ₂ O ₅	1,9 - 5,9	94,1 - 98,1	
	N	0,92 - 3,04	0.03 - 0.10	96,9 - 99,0
	S	0,71 - 1,18	5,23 - 10,4	88,5 - 93,8
	CI	2,35 - 4,90	35,9 - 44,0	53,7 - 60,3
	F	0,58 - 1,16	6,08 - 10,3	88,9 - 93.3

Tabelle A Prozentuale Verteilung stofflicher Austräge: Warmstartbetrieb

Bestandteil	Ofenasche [%]	Flugstaub [%]	Rauchgas [%]
AI	98,2 - 99,1	0,3 - 1,6	0,1 - 0,2
As	69,9 - 78,1	3,1 - 7,6	17,1 - 26,9
Au	77,2 - 98,4	0,3 - 3,8	1,3 - 19,0
Ba	96,0 - 99,3	0.6 - 3.7	0.1 - 0.2
Cd	29,9 - 52,4	42,5 - 57,8	5,1 - 12,3
Co	74,8 - 92,8	3,4 - 8,4	3,7 - 16,8
Cr	90,5 - 96,0	3,5 - 6,6	0,5 - 4,0
Cu	89.6 - 97.2	2.0 . 5.3	0.5 - 5.1
Mn	92.8 - 99.2	0.8 - 7.0	0.1 - 0.2
Mo	43.1 - 76.1	7.0 . 9.7	17.0 - 47.2
Ni	90.7 - 97.7	1.0 - 2.3	1.3 - 7.8
Pb	9.5 - 20,3	61,1 - 77,8	11.4 - 18.6
Sb	42.7 - 70.4	13.2 . 38,2	15.5 - 19.2
Se	63.1 - 78.5	4.0 - 8.5	17.2 - 28.4
Sn	66.7 - 83.3	14.8 - 22.0	1.9 - 11.3
Te	33.7 - 50,6	2.2 - 5.8	44.5 - 60.6
v	95,8 - 99,2	0.1 - 1.4	0.5 - 2.8
Zn	76.2 - 88.9	10.3 - 22.8	0.5 - 1.0
Ha	0.01 - 0.01	0.06 - 0.19	99,80 - 99,93
P	99.9 - 99.9	0.04 - 0.14	
P.O.	94,7 - 99,2	0.8 - 5.3	
N	1,15 - 4,18	0.03 - 0.04	95.8 - 98.8
S	12,5 - 18,5	1.71 - 5.85	75.7 - 85.8
CI	9.7 - 22.5	7.7 . 26.7	59.3 - 72.6
F	3.73 - 4.85	9.23 - 19.0	77.3 - 85.9

Tabelle B Prozentuale Verteilung stofflicher Austräge: Kaltstartbetrieb

Bestandteil	Warmsta Rückgev	art vir	betrieb nung (%)	Kalts Rückgev	sta vin	rtbetrieb inung (%)
AI	2730		7460	17700		29600
As	137	-	191	88		116
Au	214		13500	2470	-	42300
Ba	727	-	2400	4620	-	10700
Cd	29	-	41	8	-	24
Co	199	-	330	218	-	838
Gr	205		258	458	-	1270
Cu	123		470	41		118
Mn	21	-	38	28		59
Mo	165		322	335		340
Ni	391	-	2030	316	-	742
Pb	91	-	168	15		18
Sb	48	-	64	30		33
Se			(655.6))			
Sn	106	•	442	208		1520
Те						
v	160		226	831		3280
Zn	141	-	206	55	-	109
Hg	77	-	101	53	-	113
P	55	-	90	56	-	102
N	3		5	1		1
s	51	-	83	28		58
CI	32	-	81	32	-	33
F	2	-	2	1	-	1

A.14 Zurück gewonnene Mengen im Warm- und Kaltstartbetrieb

Anhang B Schematische Darstellung eines Kremationsofens

- 1. Einlassklappe
- 2. Vorgewärmte Bodenluft
- 3. Sekundärluft
- 4. Primäre Deckenluft
- 5. Primäre Bodenluft
- 6. Kontrollklappe
- 7. Spion
- 8. Aschensammelraum
- 9. Aschenrost
- 10. Entnahmegefäß
- 11. Hauptbrennkammer
- 12. Nachbrennkammer
- 13. Bedienung

B.2 Heizprogramm Warmstartbetrieb

Programm 2, Standard Sarg

Time/min.		•	0	1	10	20	30	40	50	60	75
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
Top air	[1]	0	30	50	60	30	20	20	20	20	20
Side air	[2]	0	0	0	0	40	70	90	70	40	40
Sec. air	[3]	30	100	100	100	100	20	0	0	0	D
Proces	[4]	0	10	100	200	300	400	500	600	750	999
Main. temp.	[5]	0	700	700	825	850	900	950	925	900	800
After. temp.	[6]	850	850	850	850	700	700	700	800	800	800
Draft	[7]	450	400	100	150	50	50	50	50	50	50
Airfan	[8]	1	1	1	1	1	1	1	1	1	1
Ejectfan	[9]	1	1	1	1	1	1	1	1	1	1
Cool.fan	[10]	0	0	0	0	0	0	0	0	0	0

59

Anhang C Ergebnisse der Messungen im Warm- und Kaltstartbetrieb

C. 1 Warmstartbetrieb

Temperatur				Ter	nperatur
Zeit	Ofen- raum	Nachbrenn- kammer	Zeit	Ofen- raum	Nachbrenn- kammer
14:13	796	762	14:51	1034	919
14:14	772	784	14:52	1043	915
14:15	768	830	14:53	1054	908
14:16	798	872	14:54	1062	897
14:17	866	859	14:55	1072	894
14:18	919	834	14:56	1080	888
14:19	947	799	14:57	1080	879
14:20	948	771	14:58	1089	866
14:21	943	778	14:59	1089	855
14:22	952	815	15:00	1089	842
14:23	971	856	15:01	1093	831
14:24	971	889	15:02	1091	820
14:25	952	935	15:03	1089	814
14:28	927	981	15:04	1089	803
14:27	906	1006	15:05	1089	796
14:28	899	1027	15:08	1080	788
14:29	908	1027	15:07	1071	779
14:30	925	1017	15:08	1057	775
14:31	943	1001	15:09	1038	770
14:32	952	981	15:10	1016	752
14:33	952	962	15:11	995	776
14:34	943	944	15:12	972	823
14:35	934	944	15:13	951	809
14:36	925	944	15:14	933	796
14:37	925	953	15:15	920	785
14:38	924	949	15:16	905	779
14:39	925	944	15:17	891	779
14:40	925	944	15:18	869	770
14:41	934	935	15:19	869	770
14:42	942	930	15:20	903	759
14:43	953	925	15:21	912	790
14:44	971	925	15:22	895	822
14:45	994	919	15:23	872	815
14:46	999	915	15:24	852	796
14:47	1007	916	15:25	833	789
14:48	1011	916	15:26	849	779
14:49	1024	915	15:27	891	781
14:50	1031	915			

	101	ubciorat		remperatur		
	Ofen-	Nachbrenn-		Ofen-	Nachbrenn	
Zeit	raum	kammer	Zeit	raum	kammer	
13:39	799	830	14:15	1120	857	
13:40	775	855	14:16	1133	857	
13:41	771	837	14:17	1143	858	
13:42	805	839	14:18	1151	852	
13:43	866	853	14:19	1142	848	
13:44	935	848	14:20	1134	838	
13:45	989	830	1421	1124	831	
13:46	1022	813	14:22	1114	820	
13:47	1040	790	1423	1105	813	
13:48	1040	795	1424	1104	812	
13:49	1081	850	14:25	1090	807	
13:50	1005	885	14:26	1062	802	
13:51	978	903	14:27	1067	801	
13:52	957	912	14:28	1050	795	
13:53	955	919	14:29	1039	793	
13:54	957	914	14:30	1032	794	
13:55	967	912	14:31	1032	794	
13:56	980	907	14:32	1022	793	
13:57	992	894	14:33	1013	793	
13:58	1001	885	14:34	1002	789	
13:59	1009	876	14:35	986	786	
14:00	1013	876	14:36	969	785	
14:01	1017	866	14:37	957	785	
14:02	1021	866	14:38	941	781	
14:03	1018	865	14:39	930	776	
14:04	1020	859	14:40	916	777	
14:05	1022	858	14:41	902	776	
14:06	1032	850	14:42	893	765	
14:07	1031	848	14:43	873	749	
14:08	1040	848	14:44	960	787	
14:09	1050	848	14:45	884	830	
14:10	1060	849	14:48	906	820	
14:11	1068	848	14:47	886	802	
14:12	1077	856	14:48	868	793	
14:13	1097	858	14:49	847	776	
14:14	1107	858	100000000			

 Tabelle C.2
 Temperaturverlauf Warmstartbetrieb, Prozess 3

C.2 Kaltstartbetrieb

Prozess 2

Anhang D Verwendete Mess- und Stichprobenverfahren

D.1 O₂, CO₂, CO, C_xH_y, CO_x, SO₂, Temperatur

Die Rauchgase werden durch eine RVS Sonde abgesaugt und durch eine erhitzte Teflonleitung (ca. 150°C) zum Messfahrzeug geführt. Die Rauchgase werden durch einen erwärmten Quarzfaserfilter und einen elektrischen Rauchgaskühler geleitet.

С

<i>O</i> ₂	
Messmethode:	Paramagnetismus
Norm:	CAN/CSA Z223.2
Instrument:	Servomex, Typ 570A
Messbereich:	0-100 vol%
Techn. Prüfung:	Ja
Detektionsgrenze:	0,1 vol%
Ungenauigkeit: CO ₂	±3% relativ (2*S, 95%)
Messmethode:	Infrarot-Absorption
Norm:	VDI 2459, Blatt 6
Instrument:	Rosemount BINOS, Typ 100
Messbereich:	Minimal 0-10 vol%
	Maximal 0-20 vol%
Techn. Prüfung:	Kein
Detektionsgrenze:	< 0,2 vol%
Ungenauigkeit: <i>CO</i>	±3% relativ (2*S, 95%)
Messmethode:	Infrarot-Absorption
Norm:	VDI 2459, Blatt 6
Instrument:	Rosemount Beckmann, Typ 880
Messbereich:	Minimal 0-100 ppmv
	Maximal 0-1000 ppmv
Techn. Prüfung:	Keine
Detektionsgrenze:	< 2 mg/m ³
Ungenauigkeit: NO/NO ₂	±3% relativ (2*S, 95%)
Messmethode:	Chemilumineszenz
Norm:	NEN 2039
Instrument:	Rosemount Beckmann, Typ 951A
Messbereich:	Minimal 0-10 ppmv
	Maximal 0-2500 ppmv
Techn. Prüfung:	Ja
Detektionsgrenze:	0,6 mg/m ³
Ungenauigkeit: <i>C_xH_y</i>	±3% relativ (2*S, 95%)
Messmethode:	Flammenionisationsdetektor
Norm:	VDI 3481, Blatt 3
Instrument:	Ratfisch, Typ RS-55
Messbereich:	Minimal 0-10 ppmv, 0-16 mg/m ³ C
	Maximal 0-10,000 ppmv, 0-16,000 mg/m ³
Techn. Prüfung:	Läuft

Smit-Report

Detektionsgrenze:	< 0,3 mg/m ³
Ungenauigkeit:	±3% relativ (2*S, 95%)
SO ₂	
Messmethode:	Ultraviolett-Absorption
Norm:	ISO/DIS 10849
Instrument:	Rosemount Binos, Typ 1004
Messbereich:	Minimal 0-100 ppmv, 0-286 mg/m ³
	Maximal 0-1000 ppmv, 0-2860 mg/m ³
Techn. Prüfung:	Läuft, für SO2 TUV-Prüfung für Binos 4, 1985
Detektionsgrenze:	4 mg/m ³
Ungenauigkeit:	±3% relativ (2*S, 95%)
Temperatur	
Messmethode:	Cr/Al thermokoppel
Norm:	DIN 73170, IPTS 1986
Instrument:	Cr/Al thermokoppel, Typ K
Messbereich:	0-1370°C
Ungenauigkeit:	±1°C

Kalibrierung der Instrumente

Die Instrumente werden im Labor von der IMET-TNO mit Hilfe von Gasmischungen kalibriert. Diese Gasmischungen sind sekundäre Standards (BETA Gasmischungen, Spectra Seal Qualität, geliefert von Hoekloos/BOC). Diese sekundären Standards sind zurückführbar zu primären Standards (gravimetrisch bereitet). Die Firmen Hoekloos und BOC sind durch Lloyds, beziehungsweise NKO, basierend auf ISO 9002, zertifiziert. Die Gasmischungen haben eine zertifizierte Konzentration mit einer Ungenauigkeit von garantiert unter 2%.

Die Kalibrierungskurve des Instruments wurde für minimal fünf Punkte (linearer Detektor) oder zehn Punkte (nicht linearer Detektor) bestimmt. An der Messstelle wird die Kalibrierung (zero oder span) des Instruments mit zertifizierten Gasmischungen (Werksstandard) kontrolliert. Die Werksstandards werden von Hoekloos/BOC geliefert und haben eine garantierte Ungenauigkeit von unter 5%. Das Zuverlässigkeitsintervall dieser Werksstandards wird im Labor von IMET-TNO durch Vergleiche mit sekundären Standards kontrolliert.

Datenbeschaffung

Die kontinuierlich registrierende Messausrüstung von der IMET-TNO wurde in einem Messfahrzeug aufgestellt. Die Messausrüstung ist verbundden mit einem Datenbeschaffungssystem, bestehend aus einer HP 3851 Datenbeschaffungseinheit und einem HP 1000 Minicomputer.

D.2 Flugasche

Mit der Satorius-Staubmessvorrichtung wurde an einer Stelle im Rauchgaskanal pro Prozess eine Staubprobe genommen, gemäß NPR 2788.

Bevor zur Probenentnahme der Rauchgase übergegangen wurde, wurde der Rauchgasertrag an Hand des Erdgasverbrauchs, dem O₂-Gehalt und Gewicht en Zusammensetzung von Sarg und Körper errechnet. An Hand des berechneten Ertrags konnte die isokinetische Absaug-Geschwindigkeit der Staubmessvorrichtung eingestellt werden.

Bei der Ausführung der Staubmessung befand sich der Filterhalter außerhalb des Rauchgaskanals ('in stack') und wurde elektrisch erhitzt, um Kondensierung von Feuchtigkeit auf dem Filter zu verhindern. Der Flugasche wurde mit einem Quarzfaser Flachfilter getrennt. Die Rauchgase wurden anschließend durch eine Reihe von in schmelzendem Eis stehenden Greenburg-Smith-Waschflaschen (Impinger) entfeuchtet.

Das abgesaugte Rauchgasvolumen wurde mittels trockenem Gasmesser bestimmt. Durch Wiegen der Filter vor und nach der Messung konnte die Menge des abgetrennten Staubs bestimmt werden. Aus dem Quotienten der Staubmengen und der abgesaugten Menge trockener Rauchgase wurde der Staubgehalt berechnet. Aus dem Quotienten der Gewichtsmenge abgefangenen Wassers und der abgesaugten Menge Rauchgase wurde der Wasserdampfgehalt berechnet. In Abbildung D.1 ist der Messaufbau schematisch dargestellt.

1 = Absaugöffnung 2 = Absaugsonde mit erwärmtem Satoriusfilterhalter 3 = Impingersert 4 = Gaspumpe

Abbildung D.1 Schema des Probenentnahmesets für die Bestimmung des Gehalts an Staub und/oder Schwermetallen (Satorius 'outstack').

D.3 Schwermetalle

Die Bestimmung der Schwermetallgehälter wurde gemäß NPR 2817 in Kombination mit einer Staubmessung (siehe auch Anhang D.2) durchgeführt. Die Impinger-Vorrichtung wurden hierzu mit ca. 150-200 ml 1 M HNO₃ gefüllt, um die flüchtigen Fraktionen der Metalle abzufangen.

Die erhaltenen Staubproben werden bei Ankunft im Labor gewogen und anschließend geöffnet. Die erhaltenen Lösungen wurden in Hinblick auf die oben genannten Schwermetalle analysiert, ebenso wie die Impingerflüssigkeiten, gemäß der NEN 6400 Serie (atomare Absorptionsspektrometrie).

In der Abbildung D.1 ist das Messverfahren schematisch dargestellt.

D.4 Quecksilber

Die Probenentnahme für die Bestimmung der Konzentration des (gasförmigen) Quecksilbers in den Rauchgasen wurde mit Hilfe von - in schmelzendem Eis stehenden - Midget Impingern durchgeführt.

Die Rauchgase wurden durch einen Quarz/Glasfaserfilter durch vier in Serie gestellten Impinger geleitet. Mit Hilfe eines Trockengasmessers wurden die abgesaugten Rauchgasmengen gemessen.

Die Impinger wurden nacheinander gefüllt mit einer Menge aus Kaliumpermanganat- und Schwefelsäurelösungen (3x) und Kieselgel. Die erhaltenen Impingerproben wurden nach Ablauf der Messungen im chemischen Labor gemäß NEN 6449 (atomare Absorptionsspektrometrie) analysiert. In Abbildung D.2 ist die Messaufbau schematisch dargestellt.

Die in den Rauchgasen anwesende Feuchtigkeit kondensierte in den Impingerflüssigkeiten. Im letzten Impinger wurden die Rauchgase durch das Kieselgel, das sich in diesem Impinger befand, getrocknet. Aus dem Unterschied zwischen den Wägungen der Flüssigkeiten und dem Kieselgel vor und nach der Probenentnahme konnte die Wassermenge in den Rauchgasen bestimmt werden.

Abbildung D.2 Schema des Probenentnahmesets für die Quecksilbergehalt Bestimmung ('out-stack').

D.5 Cl⁻, F⁻ Gehalt

Die Probenentnahme für die Bestimmung der Rauchgasbestandteile Cl⁻ und F⁻ wurde mit Hilfe von in schmelzendem Eis stehenden - polyethylen Midget Impingern durchgeführt.

Stichprobenartig wurden Rauchgase durch einen Glasfaserfilter durch die vier in Serie aufgestellten Impingern geleitet. Bei den Messungen wurde der Filter außerhalb des Rauchgaskanals aufgestellt (Abbildung D.2).

Mit Hilfe des Gasmessers wurden die abgesaugten Rauchgasmengen gemessen. Die sich in den Rauchgasen befindenden Chloride und Fluoride wurden in den Impingerflüssigkeiten ausgewaschen. Als Impingerflüssigkeit wurde H₂O₂ (3%) und NaOH (0,1 molar) benutzt. Die in den Rauchgasen anwesende Flüssigkeit kondensierte in den Impingerflüssigkeiten. Im letzten Impinger, gefüllt mit Kieselgel, wurden die Rauchgase getrocknet. Durch Wiegen der Flüssigkeiten und des Kieselgels wurde der Wassergehalt der Rauchgase bestimmt.

Nach Ablauf der Probenentnahmen wurden die folgendermaßen erhaltenden Impingerproben im chemischen Labor analysiert.

D. 6 Angewendete Analysemethoden

Nr.	Bestandteil	TNO Verfahren	Methode	Norm
	AI	INWA/SA/039	ICP-MSF.AA S	NEN 6437
	Au	INWA/SA/039	ICP-MS	
•	As	IMWA/SI/025	ET.AAS Hydride	NEN 6457 NEN 6432
•	Ba	INWA/SA/039	ICP-MS	NEN 6436
303	Cd	INWA/SA/039	ICP-MS	NEN 6458
•	Co	IMWA/SA/039	ICP-MS	NEN 6468
•	Cr	IMWA/SA/039	ICP-MS	NEN 6444
•	Cu	IMWA/SA/039	ICP-MS	NEN 6454
	Hg	IMWA/SI/027	F.AAS KalucieDalampip	NEN 6449 NEN 6449
•	Mn	IMWA/SA/039	ICP-MS	NEN 6461 NEN 6466
•	Ni	IMWA/SA/039	ICP-MS	NEN 6456 NEN 6430
•	Pb	INWA/SA/039	ICP-MS	NEN 6453 NEN 6430
•	Sb	IMWA/SA/039	ICP-MS	NEN 6433
	Sn	IMWEA/SA/039	ICP-MS	-
	Se	INWASI/029	Hydride	NEN 6434
•	Те	IMWA/SA/039	ICP-MS	
•	v	IMWA/SI/010	ET.AAS	NEN 6463
•	Zn	IMWA/SI/022	F.AAS	NEN 6443
•	F-	IMWA/SI/004	Ionenaustauschchromätog	raphie NEN 6588
	CI-	IMWA/SI/004	ionenaustauschchromatog	raphie NEN 6588
	s	Verbrennung	Infrarot nach	ASTM E-1019
	P	INWA/SA/015	ICP-AES	
	PO_3-	IMWA/SI/004	Ionenaustauschchromatog	raphie
	N-Kieldahl			NEN 6641
	Erschließen mit Königssäure	IMWA/SA/024		NEN 6465
•		INWA/SI/026		NEN 3106-6
	Schmelzen mit NaOH			NEN 3106-4
	Zerstören mit H SO			NEN 3106-9

Hinweis: Ungenauigkeiten der Analysen liegen innerhalb der angegebenen Normbereiche.

Anhang E Qualitätssicherung

Die Qualitätsrichtlinien der TNO basieren auf der Systematik der integralen Qualitätssicherung (Integrale Kwaliteitszorg, IKZ), erläutert unter 'Gids voor Kwaliteitszorg TNO'.

Die TNO Umwelt- und Energietechnologie entspricht dem Qualitätssystemstandard ISO 9001 (Zertifikat Nr. QSC-3662).⁴

Zu allen vergleichbaren Aspekten hat der AVT das Qualitätssystem zudem auf das gleiche Niveau der NKO/STERIN/STERLAB-Kriterien SC00, SC01 und SC05 gebracht.

Zur Durchführung der olfaktometrischen Analysen und 17 verschiedenen Tests auf dem Gebiet der Emissionsmessungen (Tabelle 1) wurde die Abteilung NKO/STERIN/STERLAB bevollmächtigt (unter NKO reg.nr. K-075 ⁵ und STERLAB reg.nr. L 206 ⁶.

Unterstützende Analysen, die nicht durch AVT durchgeführt wurden (Tabelle 2), fanden grundsätzlich bei einem ebenfalls STERLAB akkreditierten Analytisch Chemischen Labor (AC) der TNO (Reg.nr. L-026) statt.

Einsicht des Handbuchs Qualitätssicherung und relevanter Vorschriften kann in Anwesenheit des Amtsinhabers für Qualitätskontrolle des AVT gewährt werden.

Alle in Tabelle E.1 angegebenen Messungen sind ISO-zertifiziert, die in Tabelle 1 und 2 mit * angegebenen Messungen/Analysen sind zudem STERLAB akkreditiert.

 ⁴ SC00 Gemeinsame Kriterien, SC01 Ergänzende Kriterien für Testlabors, SC05 Ergänzende Kriterien für Kalibrierungslabors
 ⁵Durchführung von Geruchsmessungen entspr. NVM 2820.

⁶ Zur Bestimmung von:

Konzentrationen von O₂, CO₂, CO, C_xH_y, NO_x, SO₂, SO_x, Cl⁻, F⁻, H₂O, PCDD/F und PAK, Schwermetallen und Flugasche; Partikelverteilung der Flugasche;

Gastransportgeschwindigkeit;

Temperatur der Rauch-, Prozess-, und Auspuffgase, der Verbrennungs- und Prozessinstallationen und Gaskanäle.

Tabelle E.1 Übersicht über die durch AVT gehandhabte Probenentnahme- und Analysemethoden, Normen und Ungenauigkeiten [3].

Nr.	Type verrichting	Intern referentienummer MEV-XY- nse	Oszekerheid ¹	
1* Bepalen van de stofooncentratie (Gravimetrisch)		SA-015, SA-016 (afgeletid van ISO 9096)	<±10% van meetwaarde boven 5 ng/m ⁹ , bij orgunstig stomingsprofiel <±30%,	
5.	Bepalen van de Og-concentratie (Paramagnetisch)	SA-003, SA-004, SA-005 (afgeleid van CAN/CSA Z2232 m85)	<53% of 0,1 vol.%.	
3*	Bepalen van de CO ₂ -concentratie (Niet-dispensief infrarood)	SA-006, SA-007 (afgeleid van GAN/CSA Z2232 m88)	<53%	
4"	Bepsien van de CO-concentratie (Viet-dispersief infrarood)	SA-005, SA-008, SA-009, SA-013 (VCI 2459 Biatt 6)	c3%	
5*	Bepalen van de C _a H ₂ -concentratie (terekend als C _a H ₆) (FID)	SA-010 (afgeleid van VOI 3481 Blatt 3)	ct5%.	
6*	Bepales van de NO _a concentratie (xerekend als NO ₂) (Chemiuminescent)	SA-011, SA-012 (afgeleid van ISO/DIS 10849, NPR 2046)	≪4%.	
7.	Bepales van de SO ₂ -concentratie (UV)	SA-013 (afgeleid van ISO 7935)	<+%, <+8%.	
9.	Bepalen van de gasvormig anorganisch Cf-concentra lie (Natchemisch)	SA-019 (afgeleid van VDI 3480 Blatt 1, NEN 6508 konchromatografie)	<±0,7 mg/m ⁹ tot de meetwaarde van 10 mg/ m ⁹ daarboven ±10% van de meetwaarde	
10*	Bepalen van de gasvormig anorganisch F-concentratie (Nadchemisch)	SA-020 (afgeleid van ontw. NEN 2818, VDI 2470 Blatt 1, NEN 6588 ionchromatografie)	<±1 mg/m³ tot meetwaarde van 10 mg/ m³, daarboven <±10% van de meetwaarde	
18.	Bepalen van de H ₂ O-concentratie (Gravimetrisch/Psychometrisch)	SA-023 (algeleid van EPA methodie 4)	gravimetrisch <:5% van de meetwaarde psychometrisch <:2% van de meetwaarde	
13*	Bepalen van de gastemperatuur (Thermskoppel)	SA-025 (algeleid van ISO'DP 8756, VDE/ VDI 3511, VDE/VDI 3512 (Blat 2)	<±0,75% van de meetwaarde of ± 1,5 °C (grootste van beide)	
15*	Bepaler van de zware- metalerconcentr. (BLA): Sb, Pb, Cr, Cu, Mn, V, Sn, As, Co, Ni, Se, Te en Cd en hun verbindingen in zweverd stof en in de gasfase	SA-021 (oversenikomstig ontw. NPR 2817) (N.B.: Sb, Mn, V, Sn, Co, Ni, Se en Te nist in NPR 2817 opgenomen)	<-10%, <+15% van de meetwaarde	
6.	Bepaler van de concentratie van Hg en zijn verbindingen in de geafese	SA-122 (algeleid van ontv. NPR 2/617)	<10% van de meetwaarde	

Tabel E.1 Overzicht van de door AVT gehauteerde monsternemings- en analysemethoden, normen en onzekerheden [3].

¹⁾ De opgegeven onzekemeid betreft het 85% betrouwbaarheidsinterval, de percentages hebben betrekking op het ingestelde meebereik van het instrument, tenzij anders sangegeven.

Anhang F Mitgliederliste des Sachverständigenausschusses für Krematorien

Ing. H.W. Holtring Ministerium für VROM Direktion Luft und Energie Abteilung für Gewerbe (IPC 640) Postfach 30945 2500 GX Den Haag

Ir. A.C: Leendertse Ministerim für VROM Direktion Luft und Energie Abteilung für Gewerbe (IPC 640) Postfach 30945 2500 GX Den Haag

Dr. C.J.M. v.d. Boogard Ministerum für VROM HIMH/S&C (IPC 680) Postfach 30945 2500 GX Den Haag

Dr. M.A. Schwegler Infomil-NeR Postfach 30732 2500 GS Den Haag

Ir. J. Bijleveld Regionale Inspektion Umwelthygiene Nord-Brabant Postfach 6195 5600 HD Eindhoven

Mw. Y. Clemens Gemeinden Velsen Sektor Grün, Reinigung und Umwelt Postfach 199 1970 AD IJmuiden

Dhr. R.P.M. Visser Gemeinde De Bilt Postfach 300 3720 AH Bilthoven

Dhr. F. Katar DELA Uitvaartverzorging BV im Namen der Plattform Bestattungswesen Postfach 522 5600 AM Eindhoven